Midterm Exam 2
Exam Date: Monday, 22 April 2013

Instructions: This exam is timed for 50 minutes. You will be given extra time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 to 4 of the textbook. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (CH3. Finite String: Fourier Series Solution)
(a) [75\%] Display the series formula without derivation details for the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=c^{2} u_{x x}(x, t), & 0<x<L, & t>0 \\
u(0, t)=0, & t>0 \\
u(L, t)=0, & & t>0 \\
u(x, 0)=f(x), & 0<x<L, & \\
u_{t}(x, 0)=g(x), & 0<x<L . &
\end{array}\right.
$$

Symbols f and g should not appear explicitly in the series for $u(x, t)$. Expected in the formula for $u(x, t)$ are product solutions times constants.
(b) $[25 \%]$ Display an explicit formula for the Fourier coefficients which contains the symbols $L, f(x), g(x)$.
(a) Normal modes! $\operatorname{Ain}(n \pi x / L) \cos (n \pi c t / L)$,

$$
\sin (n \pi x / L) \sin (n \pi c t / L)
$$

ans $1 \rightarrow U(x, t)=\operatorname{supen}_{\infty} \rightarrow \tilde{\infty}$ option of The normal moles

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} a_{n} \sin (n \pi x / L) \cos (n \pi c t / L) \\
& \quad+\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L) \sin (n \pi c t / L)
\end{aligned}
$$

(b) $\quad f(x)=u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x / L)$
ans $2 \rightarrow a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x$ by \perp relations

$$
g(x)=u_{t}(x, 0)=\sum^{\infty} n \pi c, \quad \text { for }\{\sin (n \pi x / n)\}_{n=1}^{\infty}
$$

$$
g(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{n \pi c}{L} b_{n} \sin (n \pi x / L)
$$

ans $\longrightarrow b_{n}=\frac{L}{n \pi c} \frac{2}{L} \int_{0}^{L} g(x) \sin (n \pi x / L) d x \quad$ by \perp relations
Use this page to start your solution. Attach extra pages as needed, then staple.
\qquad
2. (CH3. Heat Conduction in a Bar)

96
Consider the heat conduction problem in a laterally insulated bar of length 2 with one end at 50 Celsius and the other end at zero Celsius. The initial temperature along the bar is given by function $f(x)$, which is a symbol used throughout the problem, devoid of a specific formula.

$$
\left\{\begin{array}{lll}
u_{t}=c^{2} u_{x x}, & 0<x<2, & t>0, \\
u(0, t)=50, & t>0, \\
u(t)=0, & t>0, \\
u(x, 0)=f(x), & 0<x<2 . &
\end{array}\right.
$$

A (a) $[25 \%]$ Find the steady-state temperature $u_{1}(x)$.
(b) $[50 \%]$ Solve the bar problem with zero Celsius temperatures at both ends, but $f(x)$ replaced by $f(x)-u_{1}(x)$. Call the answer $u_{2}(x, t)$. The answer has Fourier coefficients in integral form, unevaluated to save time.
(c) $[25 \%]$ Display an answer check for the solution $u(x, t)=u_{1}(x)+u_{2}(x, t)$.
o) $\quad\left\{\begin{array}{l}u_{t}=c^{2} u_{x x} \\ u_{0}(0,1)\end{array}\right.$

$$
=-25 x+50=25(2-x)
$$

號 $n(0, t)=130$ $u(1, t)=0$ $u(x, 0)-f(x)-u_{1}(x)=u_{2}(x, t)$

$$
U_{2}(x, t)=X(x) T(t) \quad T=K e^{-\lambda_{n t}}
$$

$$
u_{2}(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) e^{-\lambda_{n} t}
$$

$$
\lambda_{n}=\left(\frac{c \pi n}{2}\right)^{2}
$$

with $b_{n}=2 \int_{0}^{2}\left[f(x)-u_{1}\right] \sin \left(\frac{n \pi x}{2}\right) d x$
problem 2 covitirvucu
c)

$$
\begin{aligned}
& u(x, t)=u_{1}(x)+u_{2}(x, t) \\
& \left\{\begin{array}{l}
u_{t}=c^{2} u_{x x} \\
u(0, t)=50 \\
u(2, t)=0 \\
u(x, 0)=f(x)
\end{array}=\left\{\begin{array}{l}
u_{t} u_{x x} c^{2} u_{x x} \\
u(0, t)=50 \\
u(2, t)=0 \\
u(x, 0)=25(2-x)
\end{array}+\left\{\begin{array}{l}
u_{t}=c^{2} u_{x x} \\
u(0, t)=0 \\
u(2, t)=0 \\
u(x, 0)=f(x)-25(2-x)
\end{array}\right.\right.\right.
\end{aligned}
$$

Thus, It can be seen from superposition
that $u(x, t)$ does indeed equal $u,(x)+u_{2}(x, t)$
Details in DE expecteol
Details Given $u=u_{1}+u_{2}$. Verify u is a solution to the BVP.

$$
\begin{aligned}
\partial_{t} u & =\partial_{t} u_{1}+\partial_{t} u_{2} \\
& =0+c^{2} \partial_{x} \partial_{x} u_{2} \\
\Rightarrow \partial_{t} u & =c^{2} \partial_{x} \partial_{x} u, \quad \partial_{x} \partial_{x} u= \\
u(0, t) & =u_{1}(0)+u_{2}(0, t)=50+0=50 \\
u(2, t) & =u_{1}(2)+u_{2}(2, t)=0+0=0 \\
u(x, 0) & =u_{1}(x)+u_{2}(x, 0)=u_{1}(x)+f(x)-u_{1}(x) \\
& =f(x)
\end{aligned}
$$

First $B C$ verified second BC
verified

Third condition verifier.
3. (CH4. Rectangular Membrane)

Consider the general membrane problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, y, t)=c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), & 0<x<a, 0<y<b, t>0, \quad \mid O \cup \\
u(x, y, t)=0 & \text { on the boundary } \\
u(x, y, 0)=f(x, y), & 0<x<a, 0<y<b, \\
u_{t}(x, y, 0)=g(x, y), & 0<x<a, 0<y<b .
\end{array}\right.
$$

Solve the problem for $a=b=c=1, f(x, y)=1, g(x, y)=0$. Expected are displays for the normal modes, a superposition formula for $u(x, y, t)$, and explicit numerical values for the generalized Fourier coefficients.
The solution is a superposition of the nom ae modes obtained from separation of variables as:

$$
\begin{aligned}
& \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\left[B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right] \\
& \text { with } \lambda_{m n}=c \pi \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \\
& N(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\left[B_{m n} \cos \left(\lambda_{m n t} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right) ;\right.
\end{aligned}
$$

Where the Fourier coefficients are:

$$
\begin{aligned}
B_{m n} & =4 \int_{0}^{b} \int_{0}^{a} f(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
\lambda_{m n} B_{m n}^{*} & =4 \int_{0}^{b} \int_{0}^{a} g(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.
'robiem 3 continued
plugging in:

$$
a=b=c=1 \quad f(x, y)=1 \quad g(x, y)=0
$$

normal modes:

$$
\begin{aligned}
& \sin (m \pi x) \sin (n \pi y)\left[B_{m m} \cos \left(\lambda_{m n t}\right)+B_{m m}^{*} \sin \left(h_{m n} t\right)\right] \\
& \lambda_{m n}=\pi \sqrt{m^{2}+n^{2}} \\
& U(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin (m \pi x) \sin (n \pi y)\left[B_{m n} \cos \left(\lambda_{m n t}\right)+B_{m n}^{*} \sin \left(\lambda_{m n t}\right)\right.
\end{aligned}
$$

Where the fourier coefficient are:

$$
\begin{aligned}
& B_{m n}= 4 \int_{0}^{1} \int_{0}^{1} \sin (m \pi x) \sin (n \pi y) d x d y \\
&= 4 \int_{0}^{1}-\left.\cos (m \pi x) \sin (n \pi y)\left(\frac{1}{m \pi}\right)\right|_{0} ^{1} d y \\
&= 4 \int_{0}^{1}\left[-\cos (m \pi) \sin (n \pi y)\left(\frac{1}{m \pi}\right)-\sin \left(n \pi y x \frac{1}{m \pi}\right)\right] d y \\
&=\left.4\left[\cos (m \pi) \cos (n \pi y)\left(\frac{1}{m \pi n} 2\right)+\cos (n \pi) x\left(\frac{1}{m n \pi^{2}}\right)\right]\right|_{0} ^{1} \\
& B_{m n}= 4\left[\cos (m \pi) \cos (n \pi)\left(\frac{1}{m n \pi^{2}}\right)+\cos (n \pi)\left(\frac{1}{m \pi^{2}}\right)\right. \\
&\left.-\cos (m \pi)\left(\frac{1}{m n \pi^{2}}\right)-\left(\frac{1}{m n \pi^{2}}\right)\right] \\
& B_{m n}=\frac{4}{m n \pi^{2}}[\cos (m \pi) \cos (n \pi)+\cos (n \pi)-\cos (m \pi)-1]
\end{aligned}
$$

Hrobiem os contimed

$$
\begin{aligned}
\lambda_{m} B_{m n}^{x} & =4 \int_{0}^{1} \int_{0}^{1} 0 \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
& =4 \int_{0}^{1} \int_{0}^{1} 0 d x d y=0 \\
B_{m n^{*}} & =0
\end{aligned}
$$

4. (CH4. Steady-State Heat Conduction on a Disk)

$$
\left\{\begin{array}{l}
u_{r r}(r, \theta)+\frac{1}{r} u_{r}(r, \theta)+\frac{1}{r^{2}} u_{\theta \theta}(r, \theta)=0, \quad 0<r<a, \quad 0<\theta<2 \pi \\
u(a, \theta)=f(\theta), \quad 0<\theta<2 \pi
\end{array}\right.
$$

Solve for $u(r, \theta)$ when $a=1$ and $f(\theta)=$ pulse $(\theta, 0, \pi / 2)$, that is, $f(\theta)=1$ on $0 \leq \theta<\pi / 2$, $f(\theta)=0$ on $\pi / 2 \leq \theta<2 \pi$.
$R(r) \theta(\theta) \quad \rightarrow$ product solution
$R^{\prime \prime} \theta+\frac{1}{r} R^{\prime} \theta+\frac{1}{r^{2}} R \theta^{\prime \prime}=0 \quad \begin{array}{r}\text { dividing by product rotation } \\ \text { and multiplying by } r^{2}\end{array}$

$$
\frac{r^{2} R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\frac{\theta^{\prime \prime}}{\theta}=0 \quad \text { where } \frac{\theta^{\prime \prime}}{\theta}=-\lambda
$$

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0
$$

$$
\left\{\begin{array}{l}
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0 \\
\theta^{\prime \prime}+\lambda \theta=0
\end{array}\right.
$$

$$
R(r)=C_{1} r^{n}+C_{2} r^{-n}
$$

Because R is bounded $\rightarrow C_{2}=0 \Rightarrow R(r)=C_{1} r^{n}$
product solutions $\left\{\begin{array}{l}u=\left(\frac{r}{a}\right)^{n} \cos (n \theta) \quad n \geq 0 \Rightarrow r^{n} \cos n \theta \\ u=\left(\frac{r}{a}\right)^{n} \sin (n \theta) \quad n>0 \Rightarrow r^{n} \sin n \theta\end{array}\right.$

Use this page to start your solution. Attach extra pages as needed, then staple.
problem 4 continued
from the principal of superposition:

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]\left(\frac{r}{a}\right)^{n}
$$

With orthogonal set δ : $1, \sin (n \theta), \cos (n \theta)$ knowing the rues of orthogonality:

$$
\begin{cases}\int_{a}^{b} f \cdot g=0 & \text { for } f \text { and } g \text { is } S \\ \int_{a}^{b} f^{2}>0 & \text { for } f \text { in } S\end{cases}
$$

Thus, it is obvious that

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta=\frac{1}{2 \pi} \int_{0}^{\pi / 2} 1 d \theta=\left.\frac{1}{2 \pi} \theta\right|_{0} ^{\pi / 2}=\frac{\pi}{4 \pi}=\left[\frac{1}{4}\right] \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta=\frac{1}{\pi} \int_{0}^{\pi / 2} 1 \cos (n \theta) d \theta=\left.\frac{1}{n \pi} \sin (n \theta)\right|_{0} ^{\pi / 2} \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta=\frac{1}{\pi} \int_{0}^{\pi / 2} 1 \sin (n \theta) d \theta=\left.\frac{1}{n \pi}[-\cos (n \theta))\right|_{0} ^{\pi / 2} \\
& \rightarrow a_{n}=\frac{1}{n \pi} \sin \left(\frac{\pi}{2} n\right) \\
& \rightarrow b_{n}=\frac{1}{n \pi}\left(-\cos \left(\frac{\pi}{2} n\right)+\cos (0)\right)=\frac{1}{n \pi}\left[\cos \left(\frac{\pi}{2} n\right)+1\right] \\
& u(r, \theta)=\frac{1}{4}+\sum_{n=1}^{\infty}\left[\frac{1}{n \pi} \sin \left(\frac{\pi}{2} n\right) \cos n \theta+\frac{1}{n \pi}\left[-\cos \left(\frac{n \pi}{2}\right)+1\right] \sin (n \theta)\right](r)^{n}
\end{aligned}
$$

