Partial Differential Equations 3150
 Sample Midterm Exam 1
 Exam Date: Wednesday, 27 February

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count $1 / 4$.

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \leq x \leq 1, t>0$,

$$
\begin{array}{ll}
u_{t t} & =c^{2} u_{x x}, \\
u(0, t) & =0, \\
u(1, t) & =0, \\
u(x, 0) & =2 \sin (\pi x)-3 \sin (5 \pi x), \\
u_{t}(x, 0) & =0
\end{array}
$$

Name.

2. (Periodic Functions)

(a) $[30 \%]$ Find the period of $f(x)=\sin 2 x \cos 2 x$.
(b) $[40 \%]$ Let $T=2$. If $f(x)$ is the T-periodic extension of the function $f_{0}(x)=x(x-2)$ on $0 \leq x \leq 2$, then find $f(-3)$.
(c) $[30 \%]$ Is $f(x)=\cos (\sin (x))$ an even periodic function?

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

3. (Fourier Series)

Let $f_{0}(x)=1$ on the interval $0<x<\pi, f_{0}(x)=-1$ on $-\pi<x<0, f_{0}(x)=0$ for $x=0, \pi,-\pi$. Let $f(x)$ be the 2π-periodic extension of f_{0} to the whole real line.
(a) $[80 \%]$ Compute the Fourier coefficients for the terms $\sin (5 x)$ and $\cos (4 x)$.
(b) [20\%] Which values of x in $|x|<3 \pi$ might exhibit Gibb's phenomenon?

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (Cosine and Sine Series)

Find the second nonzero term in the cosine series expansion of $f(x)$, formed as the even 2π periodic extension of the base function $|\cos (2 x)|$ on $0<x<\pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you need to compute the value.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
5. (Convergence of Fourier Series)
(a) [30\%] Display Dirichlet's kernel formula.
(b) $[40 \%]$ State the Fourier Convergence Theorem for piecewise smooth functions.
(c) [30\%] Give an example of a function $f(x)$ which does not have a Gibb's over-shoot.

Use this page to start your solution. Attach extra pages as needed, then staple.

