Partial Differential Equations 3150 Sample Midterm Exam 1 Exam Date: Wednesday, 27 February

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{tt} = c^2 u_{xx}$ are given by the functions

$$\sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{n\pi ct}{L}\right), \quad \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{n\pi ct}{L}\right).$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution u(x,t) equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \le x \le 1, t > 0$,

$$u_{tt} = c^2 u_{xx}, u(0,t) = 0, u(1,t) = 0, u(x,0) = 2\sin(\pi x) - 3\sin(5\pi x), u_t(x,0) = 0.$$

Name. _____

2. (Periodic Functions)

- (a) [30%] Find the period of $f(x) = \sin 2x \cos 2x$.
- (b) [40%] Let T = 2. If f(x) is the T-periodic extension of the function $f_0(x) = x(x-2)$ on
- $0 \le x \le 2$, then find f(-3).
- (c) [30%] Is $f(x) = \cos(\sin(x))$ an even periodic function?

Name. _____

3. (Fourier Series)

Let $f_0(x) = 1$ on the interval $0 < x < \pi$, $f_0(x) = -1$ on $-\pi < x < 0$, $f_0(x) = 0$ for $x = 0, \pi, -\pi$. Let f(x) be the 2π -periodic extension of f_0 to the whole real line.

- (a) [80%] Compute the Fourier coefficients for the terms $\sin(5x)$ and $\cos(4x)$.
- (b) [20%] Which values of x in $|x| < 3\pi$ might exhibit Gibb's phenomenon?

Name. _____

4. (Cosine and Sine Series)

Find the second nonzero term in the cosine series expansion of f(x), formed as the even 2π -periodic extension of the base function $|\cos(2x)|$ on $0 < x < \pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you need to compute the value.

5. (Convergence of Fourier Series)

- (a) [30%] Display Dirichlet's kernel formula.
- (b) [40%] State the Fourier Convergence Theorem for piecewise smooth functions.
- (c) [30%] Give an example of a function f(x) which does not have a Gibb's over-shoot.