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Math 3150 Problems
Chapter 4

Due date: See the internet due date. Problems are collected once a week. Records are locked when the stack is returned. Records
are only corrected, never appended.

Submitted work. Please submit one package per problem. Label each problem with its corresponding problem number, e.g.,

Prob3.1-4 or Xc1.2-4 . Kindly label extra credit problems with label Extra Credit . You may attach this printed sheet to simplify
your work.

Labeling. The label Probx.y-z means the problem is for chapter x , section y , problem z . When y = 0, then the problem does

not have a textbook analog, it is a background problem. Otherwise, the problem number should match a corresponding problem in

the textbook. The same labeling applies to extra credit problems, e.g., Xc1.0-4 , Xc1.1-2 .

Chapter 4: 4.1-4.2 – Laplacian and Symmetric Drumhead Vibration

Prob4.1-5. (Laplacian in Spherical Coordinates)

Represent u(x, y, z) =
(

x2 + y2 + z2
)3/2

in spherical coordinates x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ and then
decide if u satisfies Laplace’s equation in spherical coordinates,

urr +
2

r
ur +

1

r2
(

uθθ + cot θ uθ + csc2 θ uφφ

)

= 0.

Xc4.1-9. (Spherical Laplacian Symmetric Case)

Supply details when u(r, θ, φ) is independent of θ and φ to verify that Laplace’s equation

urr +
2

r
ur +

1

r2
(

uθθ + cot θ uθ + csc2 θ uφφ

)

= 0

reduces to the simpler symmetric case equation

urr +
2

r
ur = 0.

Prob4.0-1. (Power Series Method)

Solve y′′ + y = x+ 1, y(0) = 0, y′(0) = 1 by the power series method to obtain a series solution in the form

y(x) =
∞
∑

n=0

anx
n.

Answer: y(x) = x+1− cosx = x+1−
∞
∑

n=0

(−1)n

(2n)!
x2n. To justify your answer, which may have a different form, compare

the first five nonzero terms of the two series answers. REF: Example 3, appendix A.5, page A44

Prob4.0-2. (Euler Differential Equation)

The transformation pair x = et, y(x) = u(t) changes the Euler differential equation Ax2y′′ + Bxy′ + Cy = 0 into the
constant-coefficient equation

A

(

d2u

dt2
−

du

dt

)

+B
du

dt
+ Cu = 0,

with corresponding characteristic equation Ar(r − 1) +Br + C = 0. REF: Example 4, appendix A.3, page A24

(a) Solve x2y′′ + 4xy′ + 2y = 0. (c) Solve x2y′′ + xy′ + 4y = 0.

(b) Solve 2x2y′′ + 6xy′ + 2y = 0. (d) Solve x2y′′ − xy′ + 5y = 0.



Prob4.0-3. (Frobenius Method)

Solve by the Frobenius method for y(x) =
∑

∞

n=0
anx

n+r, x > 0, where r is the largest root of the indicial equation.
Find only the first three nonzero terms of the Frobenius series. Check the answer using a computer algebra system.
REF: Example 2, appendix A.6, page A55

(a) 4xy′′ + 6y′ + y = 0, 4r(r − 1) + 6r + 0 = 0

(b) 4xy′′ + 2y′ + y = 0 4r(r − 1) + 2r + 0 = 0

(c) 2y′′ − 1

xy
′ + 2

xy = 0, 2r(r − 1)− r + 0 = 0

Prob4.0-4. (Frobenius Method Case 3)

Solve for two independent solutions of xy′′− (2+x)y′+2y = 0 using the method of Frobenius and optionally a computer
algebra system.

REF: Example 4, appendix A.6, page A59.

DETAILS: Indicial equation r(r − 1) − 2r + 0 = 0, with roots r = 0, r = 3. Then y1(x) = x3
∑

∞

n=0
amxm and

y2(x) = ky1(x) ln |x|+ x0
∑

∞

n=0
bnx

n.

MAPLE: There is no log term. The coefficient of C1 is y1(x) = 1 + x/4 + x2/20 + · · · and the coefficient of C2 is
y2(x) = 12 + 12x+ 6x2 + · · ·.

de:=x^2*diff(y(x),x,x)-x*(2+x)*diff(y(x),x)+2*x*y(x)=0;

dsolve({de},y(x),series);

References: Asmar PDE and BVP, Appendix A.5 or A.6, and Edwards-Penney DE and BVP, section 8.4, or DE and Linear Algebra,

chapter 11.

Prob4.2-1. (Radially Symmetric Drumhead)

Solve the radially symmetric drumhead problem for u(r, t) on the domain 0 < r < 2, t > 0:

utt(r, t) = urr(r, t) +
1

r
ur(r, t),

u(2, t) = 0,
u(r, 0) = 0,
ut(r, 0) = 1.

Xc4.2-12a. (Series Identity for J0(x))

Using Bessel’s equation of order zero,
x2y′′ + xy′ + x2y = 0,

derive from the Frobenius method the series formula

J0(x) =
∞
∑

n=0

(−1)n

4n(n!)2
x2n.

Observe that this is a special solution obtained from the Frobenius series y =
∑

∞

n=0
anx

n by taking a0 = 1.

Xc4.2-12b. (Bessel Function Identities)

Establish the identities
∫

J1(x)dx = −J0(x) + c,
∫

xJ0(x)dx = xJ1(x) + c.
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Chapter 4: 4.3-4.4 – Non-Symmetric Drumhead and 2D Wave Equation

Prob4.3-3. (Non-Symmetric Drumhead)

Solve the drumhead problem for u(r, θ, t). Plot the drumhead for t = 0, 1, 3 using a truncated series of four nonzero
numerically approximated coefficients. Assume in the problem statement 0 < r < 2, 0 < θ < 2π, t > 0.

utt(r, θ, t) = urr(r, θ, t) +
1

r
ur(r, θ, t) +

1

r2
uθθ(r, θ, t),

u(2, θ, t) = 0,
u(r, 0, t) = u(r, 2π, t),
uθ(r, 0, t) = uθ(r, 2π, t),
u(r, θ, 0) = (4− r2)r sin θ,
ut(r, θ, 0) = 1.

Xc4.3-13. (Two-Dimensional Heat Conduction)

Solve the heat conduction problem in a circular plate for u(r, θ, t). Assume in the problem statement 0 < r < 1,
0 < θ < 2π, t > 0.

ut(r, θ, t) = urr(r, θ, t) +
1

r
ur(r, θ, t) +

1

r2
uθθ(r, θ, t),

u(1, θ, t) = sin 3θ,
u(r, θ, 0) = 0.

Chapter 4: 4.4 – Steady-State Temperature in a Disk

Prob4.4-5. (Dirichlet Problem on a Disk)

Solve the unit disk steady-state heat problem on 0 < r < 1, 0 ≤ θ < 2π for u(r, θ):

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0,

u(1, θ) =

{

100 0 ≤ θ ≤ 0.25π,
0 0.25π < θ < 2π.

Prob4.4-15a. (Exterior Dirichlet Problem on a Disk)

Solve the unit disk exterior steady-state heat problem on r > 1, 0 ≤ θ < 2π for u(r, θ):

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0,

u(1, θ) =

{

100 0 ≤ θ ≤ 0.25π,
0 0.25π < θ < 2π.

Xc4.4-11. (Dirichlet Series Formula)

Establish the identity
∞
∑

n=1

un

n
sin(nθ) = arctan

(

u sin θ

1− u cos θ

)

.

Hint: Use the Taylor expansion (1)
∑

∞

n=1

z
n

n
= −ln(1− z). Replace u by r to derive the identity. Let z = reiθ and expand the Taylor

series into real and complex series. Then the imaginary part of equation (1) is the equality desired. Decoding the RHS involves writing

1− z = (1− x) + (−y)i = r1e
iθ1 followed by using the formula − tan(θ1) = −(−y)/(1− x).
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Prob4.4-15b. (Cartesian Coordinates)

Use the Dirichlet series formula with u = 1/r to convert to rectangular xy-coordinates the exterior Dirichlet problem
solution in polar form

u(r, θ) =
25

2
+

100

π

∞
∑

n=1

r−n(1− (−1)n)

n
sin(nθ).

Reference: Asmar PDE and BVP, section 4.4, where you will find several useful trigonometric identities. Use (−1)n = cos(nπ),

x = r cos θ, y = r sin θ for the conversion.

Answer: u(r, θ) = 25

2
+ 100

π (arctan(v1) + arctan(v2)) where v1 =
sin θ

r − cos θ
and v2 =

sin θ

r + cos θ
. In terms of x and y,

v1 =
y

x2 + y2 − x
, v2 =

y

x2 + y2 + x
.

Prob4.4-15c. (Isotherms)

Consider the exterior Dirichlet problem on the unit disk, r > 1, 0 ≤ θ < 2π,

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0,

u(1, θ) =

{

100 0 ≤ θ ≤ 0.25π,
0 0.25π < θ < 2π.

The isotherms are the xy-plane curves of constant temperature described by u(x, y) = T , where 0 ≤ T ≤ 100. They are
circles. Find their equations and plot a representative set of isotherms.

Chapter 4: 4.5 – Steady-State Temperature in a Cylinder

Prob4.5-1. (Steady-State Temperature in a Cylinder)

The radially symmetric case of a Dirchlet problem on a cylinder uses Laplace’s equation in cylindrical coordinates. Solve
the boundary value problem.

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

∂2u

∂z2
= 0,

u(ρ, z) = 0 on the bottom (z = 0),
u(ρ, z) = 0 on lateral surface (ρ = 1, 0 < z < 2),
u(ρ, z) = 100 on the top z = 2, 0 < ρ < 1.

Answer: u(ρ, z) = 200
∞
∑

n=1

AnJ0(λnρ) sinh(λnz) where λn is the nth positive root x of J0(x) = 0. The coefficient An

equals the reciprocal of λnJ1(λn) sinh(2λn). Suggestion: use the formulas developed in section 4.5 of Asmar.

Chapter 4: 4.6 – Poisson’s Equation on a Disk

Prob4.6-5. (Poisson’s Equation on a Disk)

Solve the Poisson disk problem by decompsition into two problems: (1) Poisson problem with zero boundary conditions,
and (2) Dirichlet problem with non-homogenous boundary condition.

∂2u

∂x2
+

∂2u

∂y2
= −u+ 1,

u(1, θ) = 0, 0 ≤ θ ≤ 2π.

Answer: The problem is first converted to polar coordinates (r, θ), using u(x, y) = u(r, θ) and x = r cos θ, y = r sin θ.
Then u(r, θ) = 2

∑

∞

n=1
AnJ0(λnr) where λn is the nth positive root x of J0(x) = 0. The coefficient An equals the

reciprocal of λn(1− λ2
n)J1(λn). Suggestion: use the formulas developed in sections 4.4 and 4.6 of Asmar.
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