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for n = 3:k-2

b(n+2) = ((n—1)*b(n) + b(n—2))/(n*(n+1))
end

format rat, b

give the same results, except that the coefficient b10 of x9 is shown as 73/31801
rather than the correct value 119/51840 shown in Eq. (4). It happens that

73 119
0.0022955253 while 0.0022955247.31801 51840

so the two rational fractions agree when rounded to 9 decimal places. The explana
tion is that (unlike Matheinatica and Maple) MATLAB works internally with deci
mal rather than exact arithmetic. But at the end its format rat algorithm converts
a correct 14—place approximation for ha) into an incorrect rational fraction that’s
“close but no cigar.”

You can substitute b1 — I, b2 = 0 and b1 = 0, b2 = 1 separately (instead of
= b2 = 1) in the commands shown here to derive partial sums of the two linearly

independent solutions displayed in Eqs. (IS) and (19) of Example 7. This technique
can be applied to any of the examples and problems in this section.

Frobenius Series Solutions
4

We now investigate the solution of the homogeneous second-order linear equation

A(x)v” + B(x)v’ ± Cc)v = 0 (1)
near a singular point. Recall that if the functions A, B, and C are polynomials
having no common factors, then the singular points of Eq. (1) are simply those
points where A(x) 0. For instance .x = 0 is the only singular point of the Bessel
equation of order ii,

v2v” + x) I + (2
— n2)y = 0.

whereas the Legendre equation of order a.

(1 — v2)v” — 2xy’ + n(n 4 1 )v = 0,

has the two singular points v = — I and x = I . It turns out that some of the features
of the solutions of such equations of the most importance for applications are largely
determined by their behavior near their singular points.

We will restrict our attention to the case in which x 0 is a singular point
of Eq. (I ). A differential equation having = a as a singular point is easily trans
formed by the substitution t = x a into one having a corresponding singular point
at 0. For example, let us substitute t = x — 1 into the Legendre equation of order ii.
Because

(iV dv (it dv

— dx — di’ dx — di’’
—

— H (dv ‘\1 di’ — dv

— dv — [di dx)j d — dt2’

and I — = I — (I + 1)2 = —2t — t2. we get the equation

(lV dy
t(t +2) — 2(t + 1)— +n(n + 1)v = 0.

di— di’
This new equation has the singular point i = 0 corresponding to .v = I in the
original equation; it has also the singular point t = —2 corresponding to x = —

ly that
fl

— 1)

2 terni
1 either
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Types of Singular Points

A differential equation having a singular point at 0 ordinarily will not have Power
series solutions of the form (x) c,x. so the straightforward method of Sec
tion 11 .2 fails in this case. To investigate the form that a solution of such an equation
might take, we assume that Eq. (1) has analytic coefficient functions and rewrite j
in the standard form

P(x)y’ + Q(x)y 0, (2)

where P = B/A and Q = C/A. Recall that x = 0 is an ordinary point (as opposed
to a singular point) of Eq. (2) if the functions P(x) and Q(x) are analytic at x
0; that is. if P(x) and Q(x) have convergent power series expansions in powers
of x on some open interval containing x = 0. Now it can be proved that each
of the functions P(x) and Q(x) either is analytic or approaches ± as x —÷ 0
Consequently, x = 0 is a singular point of Eq. (2) provided that either P(x) or
Q(x) (or both) approaches ±o asv — 0. For instancc. if we rewrite the Bessel
equation of order ii in the form

we see that P(x) = l/x and Q(x) = I (n/x)2 both approach infinity as x —÷ 0.
We will see presently that the power series method can he generalized to apply

near the singular point x = 0 of Eq. (2), provided that P(x) approaches infinity no
more rapidly than l/x, and Q() no more rapidly than l/s2, as x 0. This is a
way of saying that PCv) and Q(x) have onh “weak’ singularities at x = 0. To state
this more precisely. we rewrite Eq. (2) in the form

11
+ + , (3)

where

p (x) = .r P (x) and q (x) = 2 (4)

DEFINITION Regular Singular Point

The singular point x = 0 of Eq. (3) is a regular singular point if the functions
p(x) and q(x) are both analytic at x = 0. Otherwise it is an irregular singular
point.

In particular, the singular point x = 0 is a regular singular point if p(x) and
q(x) are both polynomials. For instance, we see that x = 0 is a regular singular
point of Bessel’s equation of order ii by writing that equation in the form

± +
.t2—n2

=

noting that p(x) I and q(x) = x2 — 72 are both polynomials in x.
By contrast, consider the equation

2x3v” + (1 + x)y’ + 3xy = 0,
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which has the singular point x 0. If we write this equation in the form of (3), we
get

U +x)/(2x2)
3

v + v +---v=0.
x x

Because
l+x 1 1

2x- 2x- 2x

asx 0 (although q(x) 4 is a polynomial), we see that x = 0 is an irregular

ed singular point. We will not discuss the solution of differential equations near irreg
— ular singular points; this is a considerably more advanced topic than the solution of
— differential equations near re2ular sineular points.ers

Example 1 Consider the differential equation

v2(l + v)y” + (4 — 12))! + (2 + 3x)y = 0.

In the standard form y” + Pv’ + Qy = 0 it is

4i2 2+3x
+ v +—-—- y=O.

x(l +x) x-(l +x)
0.

Because
42 2+3xmo P(x)= and Q(x)=

isa x(l +x) x2(l +x)
tate both approach as. —* 0, we see that x = 0 is a singular point. To determine the

nature of this singular point we write the differential equation in the form of Eq. (3):

(4v2)/U +x) , (2+3x)/(l +x)
v ± + -, v=0.
- x

Thus
4—x2 2+3x

p(x) = and q(x)
l+x l+x

Because a quotient of polynomials is analytic wherever the denominator is nonzero,
we see that p(x) and q(x) are both analytic at x = 0. Hence x = 0 is a regular
singular point of the given differential equation.

It may happen that when we begin with a differential equation in the general
form in Eq. (1) and rewrite it in the form in (3). the functions p(x) and q(x) as given
in (4) are indeterminate forms at x = 0. In this case the situation is determined by

and the limits
gular

= p(O) = lim p(x) = jim .iP(x) (5)

and

qo = q(0) = lim q(x) = limx2Q(x). (6)
+0

If Pu = 0 = q. then x = 0 may be an ordinary point of the differential equation
x2y” + xp(x)’ + q(x)v = 0 in (3). Otherwise:
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If both the limits in (5) and (6) exist and are finite, then x = 0 is a regular

singular point.

If either limit fails to exist or is infinite, then x = 0 is an irregular singular

point.

Remark: The most common case in applications, for the differential equa

tion written in the form

(3)

is that the functions p(x) and (J (x) are polynomials. In this case Pu = p(O) and

= q (0) are simply the constant terms of these polynomials, so there is no need

to evaluate the limits in Eqs. (5) and (6).

Example 2 To investigate the nature of the point x = 0 for the differential equation

.v4v” + (x2 sinx)v’ (1 — coss)v 0,

we first write it in the form in (3):

(sinx)/x (I — coss)/x2
y +— y -+ ———-——y=O.

Then l’Hopital’s rule gives the values

sin cosx
= lim lirn —- =

—() v I

and
I — coss sins I

qu = lim 1
= mu — = —

u x- 0 2x 2

for the limits in (5) and (6). Since they are not both zero, see that x 0 is not

an ordinary point. But both limits are finite, so the singular point s = 0 is regular.

Alternatively, we could write

sins 1 / x s
2 4

p(s)=—=— s———--... I=l——+—...
x x 3! 5! 3! 5!

and

1 4 6
1 — cosx I I / s x x

y2

2 4

These conergent) power series show explicitl that p(s) and q(s) are analytic and

moreover that = p(O) = I and q() = q(O) = -. thereby verifying directly that

= 0 is a regular singular point.
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The Method of Frobenius

We now approach the task of actually finding solutions of a second-order linear dif
ferential equation near the regular singular point x = 0. The simplest such equation
is the constant—coefficient equidimensional equation

2 ii
X y + Pox)’ + qov 0 (7)

to which Eq. (3 redLices when p() P0 and q(x) qo are constants. In this case
we can verify by direct substitution that the simple power function y(x) = r is a
solution of Eq. (7) if and only if r is a root of the quadratic equation

r(r — 1) + por + qo 0. (8)

In the general case, in which p(x) and q(x) are power series rather than con
stants, it is a reasonable conjecture that our differential equation might have a solu
tion of the form

y(x) = x’ C17X = c,x’ 1r + c1x’ - + (9)
n=O

—the product of r and a power series. This turns out to be a very fruitful con
jecture: according to Theorem I (soon to be stated formally), every equation of the
form in (1) having x = 0 as a regular singular point does, indeed, have at least one
such solution. This fact is the basis for the method of Frobenius. named for the
German mathematician Georg Frobenius (1848—19 17), who discovered the method
in the 1870s.

An infinite series of the form in (9) is called a Frobenius series. Note that
a Frobenius series is generally not a power series. For instance, with r = — the
series in (9) takes the form

=
2 + cix1 2 ± C2X3

2 + c3x’ +

it is not a series in integral powers of x.
To investigate the possible existence of Frobenius series solutions, we begin

with the equation

x2y ± xp(x)y’ + q(y = 0 (10)

obtained by multiplying the equation in (3) by x2. If x = 0 is a regular singular
point, then p(x) and q(x) are analytic at x = 0, so

p(x)=po+pix+p:x+p3x+
(11)

q(x) =qo±qlx+q2x±q3x3±

Suppose that Eq. (10) has the Frobenius series solution

= (12)
n =0
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We may (and always do) assume that c0 0 because the series must have a first
nonzero term. Termwise differentiation in Eq. (12) leads to

= C, (,7 + r)x’ (13)
fl=0

and

y” = c (n + r)(n + r I )x’ 2
(14)

fl

Substitution of the series in Eqs. (11) through (14) in Eq. (10) now yields

[r(r Dcoxr + (r + l)rc1x’ + ...]
* [pox+pix2+...].[rcoxr l+(r+l)cixr+]

+[qo+qix+.][coxcix+.]=0. (15)

Upon multiplying initial terms of the two products on the left-hand side here and
then collecting coefficients of r, we see that the lowest-degree term in Eq. (15) is
co[r (r — 1) + por +qo]x’. If Eq. (15) is to be satisfied identically, then the coefficient
of this term (as well as those of the higher-degree terms) must vanish. But we are
assuming that c0 0, 50 it follows that r must satisfy the quadratic equation

r (r — 1) + por + qo = 0 (16)

of precisely the same form as that obtained with the equidimensional equation in (7).
Equation (16) is called the indicial equation of the differential equation in (10), and
its two roots (possibly equal) are the exponents of the differential equation (at the
regular singular point x = 0).

Our derivation of Eq. (16) shows that if the Frobenius series y = c,1x’ is
to be a solution of the differential equation in (10), then the exponent r must be one
of the roots r1 and r2 of the indicial equation in (16). If r1 r2, it follows that there
are two possible Frobenius series solutions, whereas if rI = r2 there is only one
possible Frobenius series solution; the second solution cannot be a Frobenius series.
The exponents r and r2 in the possible Frobenius series solutions are determined
(using the indicial equation) by the values pa = p(O) and qo = q(0) that we have
discussed. In practice, particularly when the coefficients in the differential equation
in the original form in (1) are polynomials, the simplest way of finding Pa and qo is
often to write the equation in the form

11 +
P0 + Pix +p2X2 + . . .

+
qo + q1x +q2x2+

= 0. (17)

Then inspection of the series that appear in the two numerators reveals the constants

pa and qo.

Example 3 Find the exponents in the possible Frobenius series solutions of the equation

II .3 /2x(l+x)y +3x(l +x) y —(I —xjy=0.
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Solution We divide each term by 2x2U ± x) to recast the differential equation in the form

4(1 + 2.v + x2) , —(1 — x)
S + +

x

and thus see that p = 4 and q —. Hence the indicial equation is

r(r — I) + r = r2 + r — = (r + 1)(r
—

= 0.

with roots r = and r I. The two possible Frobenius series solutions are
then of the forms

vi(x) v1 and 2(x) = x Zbx.

Frobenius Series Solutions

Once the exponents r1 and r2 are known, the coefficients in a Frobenius series so
lution are determined by substitution of the series in Eqs. (12) through (14) in the
differential equation, essentially the same method as was used to determine coef
ficients in power series solutions in Section 11.2. If the exponents r and 12 are
complex conjugates, then there always exist to linearly independent Frobenius se
ries solutions. We will restrict our attention here to the case in which r and 12 are
both real. We also will seek solutions only for x > 0. Once such a solution has
been found, we need only replace . I with x’ to obtain a solution for .r < 0.
The following theorem is proved in Chapter 4 of Coddington’s An Introthiction to

Ordinar’t’ Difjieiiria/ Equations.

THEOREM 1 Frobenius Series Solutions

e Suppose that x = 0 is a regular singular point of the equation

e x2v” + xp(x)i’ + q(x)v = 0. (10)

d Let p > 0 denote the minimum of the radii of convergence of the po.er series

is p(.v) px and q (x) =

n=0 n=0

Let r and 12 he the (real) roots, with lj 2• of the indicial equation r(r — I) +
+ = 0. Then

(a) Forx > 0, there exists a solution of Eq. (10) of the form

yi (x) = ax’ (00 0) (18)
?10

conesponding to the larger root Il.

j
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(b) If r — 12 is neither zero nor a positive integer, then there exists a second
linearly independent solution for x > 0 of the form

y (x) r2 bv (b 0) (19)
II =fl

corresponding to the smaller root 12.

The radii of convergence of the power series in Eqs. (18) and (19) are each at
least p. The coefficients in these series can be determined by substituting the

series in the differential equation

2 “ /
x y +xp(x)y +q(x)y0.

We have already seen that if r1 r2, then there can exist only one Frobenius

series solution. It turns out that. if It —
is a positive integer, then there may or may

not exist a second Frobenius series solution of the form in Eq. (19) corresponding to

the smaller root 12. Examples 4 through 6 illustrate the process of determining the

coefficients in those Frobenius series solutions that are guaranteed by Theorem 1.

Example 4 Find the Frohenius series solutions of

2x2v” + 3xv’ (v2 + l)v = 0. (20)

Solution First we divide each term by 2x2 to put the equation in the form in (17):

“ ± +
——X2

= 0, (21)

We now see that x = 0 is a regular singular point, and that po = and qo =

Because p(x) and q(x) = —-
— are polynomials, the Frobenius series we

obtain will converge for all x > 0. The indicial equation is

r(r — 1) + r — (r— ) (r + 1) = 0.

so the exponents are UI = - and r2 = - I. They do not differ by an integer. so

Theorem I guarantees the existence of two linearly independent Frobenius series

solutions. Rather than separately substituting

y x1 ‘2 and Y:
= bx”

in Eq. (20), it is more efficient to begin by substituting v = cx’. We will

then get a recurrence relation that depends on r. With the value ii = it becomes

a recurrence relation for the series for y. whereas with 12 = —1 it becomes a

recurrence relation for the series for V2.

When we substitute

= c,x’ . I = (it + r -

11=0
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and

= + r)(n + r — I )C,Xhl+r 2

fl

in Eq. (20)—the original differential equation. rather than Eq. (21 )—we get

2 (n + r) (n + r — I )C.Ifl±r + 3 + r)cx’1
n=O

—

1nr4 2
= 0. (22)

n=1) n=O

At this stage there are several ways to proceed. A good standard practice is to shift
indices so that each exponent will be the same as the smallest one present. In this
example, we shift the index of summation in the third sum by —2 to reduce its
exponent from 11 + r + 2 to ii 4 r. This gives

2 Z(n + r)(n + r — I )e,1xhl+? + 3 (n + r)L.,,xl+1

n 0

— C
—

= 0. (23)
n=0

The common range of summation is ii 2. so we must treat ii = 0 and n =

separately. Following our standard practice. the terms corresponding to n = 0 will
always give the indicial equation

[2r(r 1) + 3r
— lice 2 (r2 + r

—

= 0.

The terms corresponding to ii = I yield

[2(r + l)r + 3(r + 1) 1]c1 = (212 + 5r + 2)c1 0.

Because the coefficient 2r2 4 5r + 2 of c1 is nonzero whether r = or r = —1, it
follows that

c1=0 (24)

in either case.
The coefficient of .vh in Eq. (23) is

a : 2(ii +r)(n +r — l)c, +3(ii ±r)c, —c,_2 —c, =0.

We solve for c,, and simplify to obtain the recurrence relation

c, = for ii 2. (25)
2(ii ± r)2 + (ii + r) — I

I
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CASE 1: r1 = . We now write a in place of c,, and substitute r = in Eq. (25).
This gives the recurrence relation

an
=

for n 2. (26)
2ii- ± 3n

With this formula we can determine the coefficients in the first Frobenius solution
In view of Eci. (24) we see that 0n = 0 whenever n is odd. With a = 2, 4, and 6

in Eq. (26), we get

(12 (l (14 (10
a=—. a4=—=—— and a6==

- 14 41 616 90 55,430

Hence the first Frobenius solution is

-) 6
V .X .5

(x)=a0x l±—± 6±44o±

CAsI 2: 2 = — I. We now write b in place of c,, and substitute r = — I in
Eq. (25). This gis es the recurrence relation

n 2

_____

— for a 2. (27)
2b- — 3,1

Again. Eq. (24) implies that b = 0 for ii odd. With a 2. 4. and 6 in (27). we get

h0 b h0 1)4 b0
= — . = = —. and b, — =

- 2 20 40 54 2160

Hence the second Frobenius solution is

/ 2 x6
Y2(v)=box

Example 5 Find a Frobenius solution of BesseFs equation of order zero.

2” ±y’ ± x2y = 0. (28)

Solution In the form of (17). Eq. (28) becomes

11

+ + =

Hence .v = 0 isaregular singular point with p(x) I and q() x2. so our series

will converge for all .v > 0. Because Pu = 1 and q = 0. the indicial equation is

r(r — 1) ± r = r2 = 0.

Thus we obtain only the single exponent r = 0. and so there is only one Frobenius

series solution

(x)
= .s

1n

()

of Eq. 28); it is in fact a power series.
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Thus we substitute v ex” in (28): the result is

26) n (n 1)cx + ncx + c,,+2 = o.
n=O ,,=O n=O

ion We combine the first two sums and shift the index of summation in the third by —2
d 6 to obtain

tn2c.i” + c = 0.
i,=O n=2

The term corresponding to x gives 0 0: no information. The term corresponding
to st gives c1 = 0, and the term for s’ yields the recurrence relation

forn 2. (29)

Because c1 = 0, we see that c = 0 whenever n is odd. Substituting n = 2. 4, and
6 in Eq. (29), we get

27) C0 C2 C0 C4
C2=—--. c4=—=2242, and co=—=—-74767.

get
Evidently, the pattern is

(—l)co (—l)c
= =

- 22 .42..
. (2n)2 221(n!)2

The choice c0 = 1 gives us one of the most important special functions in math
ematics, the Bessel function of order zero of the first kind, denoted by J0(x).

Thus

(—1)”x2 2

22”(n!)2
= 1

—

+
64 — 2304

(30)

(28)

In this example we have not been able to find a second linearly independent solution
of Besseis equation of order zero. We will derive that solution in Section 11.4: it
will not be a Frobenius series.

When — r, Is an Integer
3ries —

Recall that, if Ij
— 12 is a positive integer, then Theorem 1 guarantees only the

existence of the Frobenius series solution corresponding to the larger exponent r1.
Example 6 illustrates the fortunate case in which the series method nevertheless
yields a second Frobenius series solution. An example in which the second solution
is not a Frobenius series will be discussed in Section 11.4.

Example 6 Find the Frobenius series solutions of

x” + 2v’ + xv = 0. (31)

j
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Solution In standard form the equation becomes

2 x2
y” + —y’ + y —0.

I I-

so we see that x = 0 is a regular singular point with p = 2 and qo = 0. The

indicial equation
r(r — 1) ± 2r = r(r + 1) = 0

has roots r1 = 0 and r7 = —1, which differ by an integer. In this case when r1 — r2

is an integer, it is better to depart from the standard procedure of Example 4 and

begin our work with the sinai/er exponent. As you will see, the recurrence relation

will then tell us whether or not a second Frobenius series solution exists. If it does

exist, our computations will simultaneously yield both Frobenius series solutions.

if the second solution does not exist, we begin anev with the larger exponent r = rj

to obtain the one Frobenius series solution guaranteed by Theorem 1.

Hence we begin by substituting

y = x cx =

n=O n=O

in Eq. (31). This gives

I) (ii — 2)c,x”2+ 2 Z( 1 )cux’ 2 + = 0.

n=O n=O

We combine the first two sums and shift the index by —2 in the third to obtain

ii (n — I )c,x’ 2 ±
2

= 0. (32)

n=O n=2

The cases 11 = 0 and a = 1 reduce to

0•c0=0 and 0c1=0.

Hence we have two arbitrary constants C0 and c1 and therefore can expect to find a

general solution incorporating two linearly independent Frobenius series solutions.

If, for a = 1, we had obtained an equation such as 0 c1 3, which can be satisfied

for no choice of c1. this would have told us that no second Frobenius series solution

could exist.
Now knowing that all is well, from (32) we read the recurrence relation

— C 2
for a 2. (33)

n(n — 1)

The first few values of a give

1 1
= ——-C0. C3

1 c0 I
C4—C, —,

43 4! 5.4 5!

I I

65 6! 7.6 7!
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evidently the pattern is

(—I )?CQ I— I )‘c
=

.

— (2ii)! (2n + 1)!

for ii 1. Therefore, a general solution of Eq. (31) is
The

y(x) .x c,1x”
fl ()

—r2
.2 4 / . .5

1 ( / .x . L I . .

l —+—-• ±Ix—+—
tion x 2! 4! x \ 3! 5!
loes
ons. — C ( I )Ix2fl c1 (— I )x2
= r1

— .V (2n)!
+

.v (21, + I)!

Thus
1

(x) = (Cu cos S + C1 Sin .v).

_______

We have thus found a general solution expressed as a linear combination of the two
Frobenius series solutions

cosx sinx
FIGURE 11.3.1. The SOILItiOnS )‘ = and 22(x) = — (34)

cosx sins
and 22(X) = As indicated in Fig. II .3.1, one of these Frobenius series solutions is bounded but

the other is unbounded near the regular singular points = O—a common occurrence
in Example 6. in the case of exponents differing b\ an integer.

(32) Summary

When confronted with a linear second-order differential equation

A(x)v” + B(x)v’ + C(x)v = 0

with analytic coefficient functions, in order to investigate the possible existence of
series solutions we first write the equation in the standard form

nd a
ions. “+ P(x)v’ Q(x)y 0.

sfied . .
If F(s) and Q(x) are both analytic at x = 0, then x = 0 is an ordinary point, and

i ion the equation has two linearly independent poxs er series solutions.
Otherwise. x 0 is a singular point, and we next write the differential equa

tion in the form

p(.v) q(x)
(3 v” + v’ + v = 0.

5-

If p(x) and q (.v) are both analytic at x = 0, then .v 0 is a regular singular point.
In this case we find the two exponents r and 12 (assumed real, and with r ‘ 12) by
solving the indicial equation

r(r — 1) + p01 + q = 0.

where = p(O) and q = q(0). There always exists a Frobenius series solution
v = x’ associated with the larger exponent r1, and if r1 — 12 is not an

integer, the existence of a second Frohenius series solution 22 Z b,1x1 is also
guaranteed.
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Problems

In Problems 1 through 8, determine whether x = 0 is an ordi—

han’ point, a regular singular point, or an irregular singular

point. If it is a regular singular point, find the exponents of the

differential equation at x = 0.

1. xv” + (x — x3)’ + (sinx)v 0

2. xv” + x2y’ + (e 1))’ = 0

3. r2v” + (cosx)v’ + x = 0

4. 3xv” + 2x2v’ + (1 — x2)v = 0

5. x( I + x)” + 2)” + 3xy = 0

6. x2(1
—
v2)y” + 2xv’ — 2)’ = 0

7 2y” + (6 sinx)v’ ± 6y = 0

8. (6x2 + 2x3)y” + 21,iv’ ± 9(x2
—

l)s = 0

if x = a fi 0 is a singular point of a second-order linear dif

frential equation. tlieii the substitution t , — a transJisrni

it into a difjerential equation having t = 0 as a singular point.

W then attribute to the original equation at x = a the be

htu’ior oJ’ the nen’ equation at I = 0, Classfv (as regular or

irregular) the singular points tf the diffrrential equations in

P,vblenis 9 through 16.

9. (1 —x)v” ±xv +x2y 0

10. (1 — x)2y” + (2x 2)” + y = 0

11. (1 — x2)y” — 2xv’ + 12)’ 0

12. (x—2)3v”+3C—2)2v’+xv=0

13. (x2 — 4)” ± (x — 2))” ± lx ± 2)s = 0

14. (x2 — 9)2y” + (x + 9))” + (x2 + 4)v = 0

15. (x — 2)2),
— (x2 — 4)v’ + (x + 2)v = 0

16. x(l — x)v” + (3x + 2)v’ + xv = 0

Find i ivo linearly independent Frobeniu s series solutions (for

x > 0) of each of the diffrrential equations iii Problems 17

through 26.

17. 4xy” + 2)” -t y = 0

18. 2xy” -I- 3v’ —)‘ 0
19. 2xy”

—
y’

—
y 0

20. 3xy” + 2)” + 2)’ = 0

21. 2x2y” + xv’ — (1 + 2x2)y = 0

22. 2x2y” +xy’ —(3— 2x2)v = 0

23. 6x2y” + 7xy’ — (x2 + 2))’ = 0

24.3xv + 2.x)’ + X)’ 0

25. 2xv” + (1 +x)y’ ± v = 0

26. 2xy” + (1 — 2x2))” — 4xv = 0

Use the method of Evaniple 6 to find two linear/v independent

Froben ins series solution v oft/ic dif/rential equations in Prob

leins 27 through 31. Then construct a graph showing their

graphs for x > 0.

27. xy’ + 2)” + 9xy = 0

28. xy” + 2y’ — 4xy = 0

29. 4x” + Sr + xv 0

30. xv” — )“ + 4x3v = 0

31. 4x2” —4xy’ + (3 —4v2)v = 0

In Problems 32 through 34, find the first three nonzero teons

of each of’two linearly independent Frobenius series solutions

32. 2x2), +x(x + Dy’ — (2x + Dy = 0

33. (2x2 + 5xDy” + (3x — x2)v’ —(1 ±x)y = 0

34. 2s2v” + (sinx)y’ — (cosx)v = 0

35. Note that .x = 0 is an irregular point of the equation

x2v” + (3x
— Dy’ ±y = 0.

(a) Show that v x’ c,x” can satisfy this equation

only if r = 0. (b) Substitute y = cx” to derive

the “formal” solution y = What is the radius of

convergence of this series?

36. (a) Suppose that A and B are nonzero constants. Show

that the equation x2v” +- A)” + B)’ 0 has at most one

solution of the form s = x c.s”. (b) Repeat part (a)

with the equation xy” + Ax)” + By = 0. (c) Show

that the equation x” + Ax2)” + B)’ 0 has no Frobe

nius series solution, (Suggestion: In each case substitute
= c,,.s” in the given equation to determine the pos

sible values of r.)

37. (a) Use the method of Frobenius to derive the solution

= x of the equalion x3v” — xy’ +y = 0. Ib) Verify

by substitution the second solution y xc ‘. Does Y2

have a Frobenius series representation?

38. Apply the method of Frobenius to Bessel’s equation of

order
y) + xv’ + (x2

—
)y = 0.

to derive its general solution for x > 0,

cosx sinx
1(v) cU’

FIGURE 11.3.2. The solutions
cosx sinx

v1(x) = —,- and vCv) = —f- in

Problem 38,

Figure 11.3.2 shoss the graphs of the two indicated solu

tions,
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yi(x) = AC) cos(lnx) B(s) sin(lns).

= A) sin(lnx) + BCv) cos(lnx),

where A(s) as” and B(s) = bus”.
41. Consider the differential equation

.C—l)C±l)2v”+2sC—3)C+l)v’—2C1)v=O

that appeared in an advertisement for a symbolic algebra
program in the March 1984 issue of the American Math
e,natical Monthly. (a) Show that x 0 is a regular
singular point with exponents r1 1 and r2 = 0. (b) It
follows from Theorem I that this differential equation has
a power series solution of the form

yic = s + c2s2 + cs +

11.3 Application

sith c,
series is

v(s) =
.x ens”

(ii) xF(l, 1,2, —s) = ln(l
I 3 ‘(ni) sF (?‘ I. . —s) = tan ;

Substitute this series (with c1 = I) in the differential equa
tion to show that c2 = -2, c3 = 3. and

(2
—

n)e i + (n2 — 5n — 2)c,, — (n2 ± 7n + 4)c,,1

(n H— l)(n —1—2)

for a > 2. (c) Use the recurrence relation in part (b)
to prove by induction that c (— l)” a for n I (!).
Hence deduce (using the geometric series) that

Si(s)
=

for0<s< I.
42. This problem is a brief introduction to Gauss’s hypergeo

metric equation

vU —s)v”+ U’ — (a + + 1)sjv —cBv = 0, (35)

where a, , and y are constants. This famous equation has
wide-ranging applications in mathematics and physics.
(a) Show that 0 isa regular singular point of Eq. (35),
with exponents 0 and 1 y. (b) If y is not zero or a neg
ative integer, it follows (why?) that Eq. (35) has a power
series solution

39. (a) Show that Bessel’s equation of order 1,

+ + (s — I )v = 0.

has exponents r = I and r2 —1 at s = 0. and that the
Frobenius series corresponding to r1 = I is

C’s (—l)s
Ji( = —

__________

2 a! (a + 1)! 22

(b) Show that there is no Frobenius solution correspond
ing to the smaller exponent r2 —1; that is, show that it
is impossible to determine the coefficients in

= s

40. Consider the equation sv’ + ss’ + (I — x)v = 0. (a)
Shos that its exponents are ±i, so it has complex-valued
Frobenius series solutions

and v = x ‘

0 ,, Ci

with p = qo = 1. (b) Show that the recursion formula
is

C,,
C

= 2 ± 2rn

Apply this formula with r = ito obtain p = c. then with
r = —i to obtain q = c,. ConclLide that p,, and q,, are
complex conjugates: p, = a,, + ib,, and q,, = a — ib,,.
where the numbers (a,,) and (h,, I are real. (ci Deduce
from part (b) that the differential equation given in this
problem has real-valued solutions of the form

0. Show that the recurrence relation for this

(a + n)( + n)
C’,,, = — —C

(y±n)(l+n)

for a 0. (c) Conclude that with e0 = 1 the series in
part (b) is

vC) = 1 ± (36)
a.

where a a(cr + I )(a ± 2). (a -r 11 — I) for a 1,
and (,, and y are defined similarly. (d) The series in (36)
is known as the hypergeometric series and is commonly
denoted by F(a, /, y, x). Show that

(i) F( 1, 1, 1, s)
= -i——— (the geometric series);

(iv) F(—k. 1. 1. —x) = (I + siC (the binomial series).

Automating the Frobenius Series Method

Here we illustrate the use of a computer algebra system such as Maple to apply

the method of Frobenius. More complete versions of this application—illustrating

the use of Maple. Mathematica. and MATLAB—can be found in the applications


