Luna Koizumi
Math 2270
April 25,2012

.Wav Sound Compressions Using Maple

This project used Maple to compress .wav files of various instrument notes to see the
effects compressions had on those notes.

What is compression? Compression is a method used to decrease data file sizes in order
to save storage space or time it takes to save and open such data. Compression can be
implemented on a variety of digital data including text files, images, and music. In text file
compressions, the process can decrease its data size by up to 50% by inserting a character
that identifies patterns. In images, there are two types of compressions. One is compression
that leads to loss of data. Although an image size is decreased, it can also lead to the
decrease in amount of data for the image, leading to decrease in quality. The other method
of compression however, has the ability to decrease data size while allowing it to recover
its original data even after compression has occurred.

There are at least four types of compression when it comes to music. Two that deal with
sound volume and range, and the other two dealing with quality and size of music files.
Dynamic range compression (DRC), also known as “compression” in the music industry is a
method which reduces the volume of loud sounds and amplifies the volume of quiet
sounds. Each sound has different levels of sound. For example, the beating of a drum most
likely has a louder sound level than a person’s whisper. In DRC, the engineer can change
such audio file to make the drums quieter and the voice louder. Or, it can make the drums
louder, also called “punchier” and the voice softer. In other words, it can change the volume
of any sound in any combination. Some individuals claim that this process, although not
apparent when listening to a compressed music file in the car or through an iPod, simply
makes the music volume loud and does not preserve quality.

The other type of music compression is simply compressing the size of an audio file. This
results in lossy or loseless compression (analogous to the losing and no loss of data in the
image compressions). Examples of lossless compression are DTS-HD and Dolby True HD
which retains all of its original information.

Although these four types of compression are categorized differently, they come hand in
hand. In other words, DRC can also lead to smaller data sizes, and lossy compression.

In this project, we focused on compressing sounds files. In order to do this, we decreased
the dynamic range of the audio signals in the different sound files by eliminating the
sounds the were present in the files that were very minor and outliers which when deleted,
would not effect the quality of the sound to a listener’s ear, greatly.

The Project:
[used a code that was provided to me through Dr. Gustafson’s website to compress .wav
files in Maple.

Luna Koizumi

Math 2270

April 25,2012

First, I compressed a puretone:

0.5
0 T v — g T g T g 1
] 0.00 0.00 0.0 0.008 0.010
-0.5
-1 -
Graph 1

Here, cos(2*261.626*2*Pi*x/44100) describes the frequency of Graph 1 and through the
graph, we can see that the amplitude is approximately 0.002 (=0.0034-0.0014). Here, the
pure tone was created using a cosine equation.

The Fourier theorem states that we can describe any periodic waveform by the sum of a
series of sine waves with frequencies in a harmonic series. Below, we change the pure tone
data as a function of time as function of frequency.

Luna Koizumi
Math 2270
April 25,2012

R0

60+

404

204

T T T T 1
2000 4000 6000 {000 10000

204

Graph 2

Graph 2 shows the energy of pure tone. According to Graph 2, all the energy is at around
1000Hz (where the red spike is), which makes sense because in pure tone, only one tone
sticks.

Likewise, we can verify this pure tone data by importing an audio file of a pure tone than an
equation. In other words, we illustrate the same pure tone using an actual audio file of pure
tone.

Audio:=Read(“/u/class/k/c-kilr/puretonedata.wav”)
Preview(audio, 0...01);

T T T T 1
0.002 0.004 0.006 0.008 0.010

Graph 3

Luna Koizumi

Math 2270

April 25,2012

Here, we observe that Graph 1 and Graph 3 is identical as it should be since we are working
on the same exact pure tone. Below, we take the audio and make a data set that is the
transpose of the audio vector.

80

60-

40

20-

e _)'I' N T M T N T N 1
100 2000 3000 4000 5000
X
=204
Graph 4

Graph 2 and Graph 4 is identical as it should be.

Now, we will compress the dataset and then see its energy frequencies after the
compression.

Luna Koizumi
Math 2270
April 25,2012

R0
604

404

204

‘I' T T T 1
100 2000 3000 4000 5000

204

Graph 5
Graph 5 shows the energy spectrum after the compression has occurred on the pure tone
audio file. Graph 4 and Graph 5 seems identical, at least to the human eye, as far as we
know. This means that after the compression, nothing was lost and that the energy is still
completely intact, at around 1000Hz as it was before the compression. This means that the
compression, at least for the pure tone, did not lead to a loss in data.

Then, we inverse transform (Inverse Fourier Transform) the compressed data to get a sine
wave. The Preview below allows us to see the sine wave from before the compression
above the x-axis and the sine wave after the compression below the x-axis. That is why you
see two plots on the same axis.

decodeddata:=map(x—2>Re(x), InverseFourierTransform(compresseddata)):
compressedaudio:= Create(decodeddata):
Preview(Create(<data|compressedaudio>),0.0...01);

T T T T T T T T T
0.002 0.004 0.006 0.008 0.010

Graph 6

Luna Koizumi
Math 2270
April 25,2012

As you can see in Graph 6, the sine wave seems almost identical. The only difference is that
the amplitude seems a little smaller after the compression, but the period seems to remain
the same. Again, we can come to a similar comparison as we did by comparing Graph 4 and
5, that it does not seem like the sound quality and data has remained intact.

Second, we will be compressing a note from a flute. We use the same Maple code as we did

for the pure tone, except with a different input for the flute data. Before the compression,
below was the sound wave and energy diagram:

104

0 T T T T T T T T T | 0 T L B T T T T T T 1
0002 0.004 0.006 0.008 0.010 1000 2000 r 3000 4poo 5000
a

0.2 H 10

0.4 4 204

Graph 7 Graph 8

Here, the energy of the flute sound seems to be at three main points (corresponding to the
spikes in Graph 8) at 1300Hz, 2600Hz, and 3900Hz. The flute has overtones unlike the pure
tone which was just a steady sound with no overtones. This means that a lot of terms are
needed to describe the sound graph. In the case of the flute audio, we need three terms of
Fourier Series for the total energy.

Now, take a look at Graph 9 and 10 below. Graph 9 is the energy graph after compression of
the flute data, and Graph 10 is the comparison between the sound wave pre- and post-
compression.

Graph 9 looks exactly the same as Graph 8, which implies that no data seems to be lost pre-
and post- compression. When we look at Graph 9, we can see that the general shape of the
sound waves are intact and the peaks seem to occur at similar times. However, one can
argue that the sound ways do look different. Based on the patterns of the pre-compression
sound wave, the second highest peak of each cycle in the pre-compression wave actually
corresponds to the lowest peak of each cycle in the post-compression wave. However,

Luna Koizumi
Math 2270

April 25,2012
because the main shape is still intact, we can make an educated guess that the sound will

most likely sound the same to an individual’s ear.

| ‘\“ "\‘
f { | - |
v I | |
|
104 LA s ‘ \ w
V] Y Vo Vo Vol
|
| | \ | \
\‘ I\ ¥ 1
[) T L T T T T Ll T v 1
1000 2000 [3000 4p00 5000
! (H)I[)l ().[)I()-l (')‘(ll()(.\ (),()I[).‘i ().[)' 10
10
“
20 \ ‘
Graph 9 Graph 10
Next, we will analyze the piano! (This is where things get exciting!)
! 1 \]
\‘ ‘ ‘ ‘\
0.4 | ‘ \ | \ \ | 4-
‘ LA 1A R [!
. _‘\U ‘ \ / | ‘u‘ \ U 34
, | _
¢ | ‘ ‘ 24
0 L T L LI T T T T ¥ 1
0.002| | 0.004 ‘\ 0006 | 0.008 0.010
|
.v‘ \ “ 11
024 | ||
| | Wl
\ “ 0 oA 4+ ———————————————
0.4 4 f ’ i()t’)() 2000 3000 4000 5000
A
|- |)
0.6 1 ‘
| | "]
084 “ \ ‘

Graph 11 Graph 12

Here, we see the energies at various locations. There is a large energy frequency between 0
and 1000 Hz. After that, it becomes smaller and smaller and becomes “tally”-like from
1750Hz to approximately 3250 Hz, spreading out more and more at the energy level

increases.

Luna Koizumi
Math 2270
April 25,2012

.
T T

T
2000

T
3000

Graph 13

T
4000

1
5000

T T T T
0.002 0.004 0.006 0.008

Graph 14

T
0.010

Graph 13 and 14 are the graphs after compression. From Graph 13, we see that the energy

frequencies at higher energies have disappeared. In other words, we do not see any “tallies’

)

past approximately 1570Hz. This tells us that the data for the energies above 1570 Hz has
been eliminated from our audio data through compression. The before and after graph in
Graph 14 is significantly more different than it has been for the other audio sounds. Here,
the amplitudes are completely different and the “dips” and change in graph slopes are not
as drastic. However, because the only data lost in the process was at higher Hzs, and is not
a significant part of the audio, we hypothesize that the sound will sound similar to the ear

after compression.

Next, we will analyze the trumpet’s audio sound.

0.5 7

0.4

0.3 A

0.2 1

0.1 4

T
0LopR

T
0.004

T
0006

Graph 15

T
LOO,

1
0g10

T8y T
000 3000 4000

Graph 16

1
5000

Luna Koizumi
Math 2270
April 25,2012

The “before” graph (Graph 15 and 16) are quite distinct. The wave graph is very cluttered
and seems to not have a perfect, repetitive shape from period to period. Graph 16 also
covers ranges 0-5000Hz fully, which suggests a lot of overtone.

T T 1
3000 4000 5000

T T T T T T T
0.002 0.004 0.006 0.008 0.010

Graph 17 Graph 18

However, after compression, we do not see any energy after approximately 2600Hz in
Graph 17. Like the piano model, higher energies were lost in the compression process.
Graph 18 also has the most loss of original form that we have seen thus far. The “after”
portion of Graph 18 does not have any sort of repetitive pattern, nor does it seem similar to
the “before” portion of Graph 18.

It would be extremely interesting to re-convert the compressed audio data to an actual
audio file and listen to it in comparison to the pre-compressed audio file. Unfortunately, for
this project, [was not able to get the re-converting code to work in Maple. I could not get
the .wav file to open up and play the re-written compressed audio to play. The code that I
used was:

For the piano-

SoundFile := “/u/class/k/c-kilr/puretonedata.wav”;
Write(SoundFile, compressedaudio3);
process[launch](cat("sndrec32.exe ", SoundFile))
end proc;

PlayWave(compressedaudio3)

Luna Koizumi

Math 2270

April 25,2012

If there was more time, it would have been interesting to see how much compression was
too much. In this project, [used 10% compression, which seemed to work fairly well in
maintaining its original audio sound. However, what if the compression was 20%? 50%?
Better yet, how would those even sound like?

