Tellegen's Theorem

Circuit:

$$
\begin{aligned}
& v_{0}=\phi_{0}-\phi_{3}, \quad v_{1}=\phi_{1}-\phi_{0}, \quad v_{2}=\phi_{0}-\phi_{2} \\
& v_{3}=\phi_{3}-\phi_{2}, \quad v_{4}=\phi_{1}-\phi_{3}, v_{5}=\phi_{3}-\phi_{2}
\end{aligned}
$$

Incidence Matrix:

$$
\begin{aligned}
& \text { node: } 0123 \\
& \text { element: } 0 \begin{array}{r}
\text { 1 } \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{rrrr}
+1 & 0 & 0 & -1 \\
-1 & +1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0 & +1 & -1 & 0 \\
0 & +1 & 0 & -1 \\
0 & 0 & -1 & +1
\end{array}\right]=\mathbf{A} \quad \begin{array}{c}
\text { element: } \\
\text { node: } 0 \\
1 \\
2 \\
0
\end{array}\left[\begin{array}{rrrrrr}
+1 & -1 & +1 & 0 & 3 & 4 \\
0 & +1 & 0 & +1 & +1 & 0 \\
0 & 0 & -1 & -1 & 0 & -1 \\
-1 & 0 & 0 & 0 & -1 & +1
\end{array}\right]=\mathbf{A}^{\mathrm{T}}
\end{aligned}
$$

Potential, Voltage, and Current Vectors

$$
\phi=\left[\begin{array}{l}
\phi_{0} \\
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right] \quad \mathbf{i}=\left[\begin{array}{l}
i_{0} \\
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right]
$$

Then,

$$
\mathbf{v}=\mathbf{A} \boldsymbol{\phi}, \mathbf{i} \cdot \mathbf{A} \phi=\mathbf{i} \cdot \mathbf{v}=\sum_{n=0}^{5} i_{n} v_{n}
$$

Also, by KCL

$$
\mathbf{A}^{\mathrm{T}} \mathbf{i}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \boldsymbol{\phi} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{i}=0
$$

But

$$
\mathbf{i} \cdot \mathbf{A} \boldsymbol{\phi} \equiv \phi \cdot \mathbf{A}^{\mathrm{T}} \mathbf{i}
$$

leading to Tellegen's Theorem

$$
\sum_{n=0}^{5} i_{n} v_{n}=0
$$

The only requirement is that all the i_{n} be for one set a of elements in the circuit so that KCL holds, and all the v_{n} be for another set b of elements in the circuit so that KVL holds (a set of potentials ϕ can be assigned). When set a is the same as set b, the result is simply the conservation of power. But Tellegen's Theorem is more general and leads to many other results such as reciprocity theorems. See Tellegen's Theorem and Electrical Networks (MIT research monograph no. 58) by Paul Penfield, Robert Spencer, S. Duinker.

Example of Using Tellegen's Theorem

Consider two networks with the same topology and, inside their respective two-port boxes, the same set of elements-passive complex impedances $z_{n}(s)$. The outside elements differ-an open circuit at port 0 and a source at port 1 in one case, and a source at port 0 and a short circuit at port 1 in the other case.

Choosing the currents from network a and the voltages from network b for Tellegen's Theorem,

$$
\begin{aligned}
0 & =\sum_{n=0}^{N} i_{a n} v_{b n}=i_{a 0} v_{b 0}+i_{a 1} v_{b 1}+\sum_{n=2}^{N} i_{a n} v_{b n}=0 \cdot v_{b 0}+i_{a 1} \cdot 0+\sum_{n=2}^{N} i_{a n} v_{b n}=\sum_{n=2}^{N} i_{a n} v_{b n} \\
& =\sum_{n=2}^{N} i_{a n} i_{b n} z_{n}(s) .
\end{aligned}
$$

Choosing the voltages from network a and the currents from network b for Tellegen's Theorem,

$$
\begin{aligned}
0 & =\sum_{n=0}^{N} v_{a n} i_{b n}=v_{a 0} i_{b 0}+v_{a 1} i_{b 1}+\sum_{n=2}^{N} v_{a n} i_{b n}=v_{a 0} i_{b 0}+v_{a 1} i_{b 1}+\sum_{n=2}^{N} i_{a n} z_{n}(s) i_{b n}=v_{a 0} i_{b 0}+v_{a 1} i_{b 1}+\sum_{n=2}^{N} i_{a n} i_{b n} z_{n}(s) \\
& =v_{a 0} i_{b 0}+v_{a 1} i_{b 1} .
\end{aligned}
$$

Therefore we have a reciprocity of the reverse open-circuit voltage transfer equaling the forward short-circuit current transfer:

$$
\frac{v_{a 0}}{v_{a 1}}=\frac{i_{b 1}}{-i_{b 0}}
$$

