Math 2270 Extra Credit Problems

Chapter 2

December 2011

These problems were created for Bretscher’s textbook, but apply for Strang’s book, except for the division by chapter. To find the background for a problem, consult Bretscher’s textbook, which can be checked out from the math library or the LCB Math Center.

Due date: See the internet due dates. Records are locked on that date and only corrected, never appended.

Submitted work. Please submit one stapled package. Kindly label problems [Extra Credit]. Label each problem with its corresponding problem number. You may attach this printed sheet to simplify your work.

Problem XC2.1-16. (Invertible T)

Decide invertibility of $T(x) = Ax$ for the following matrices A. Then find the matrix of T^{-1}, in each case.

- $A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$
- $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
- $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$

Problem XC2.1-43. (Matrix of T)

(a) Suppose v has components $2, -2, 5$. Find the matrix of $T(x) = v \cdot x$.

(b) Prove that every linear transformation T from \mathbb{R}^3 into \mathbb{R}^1 can be written as $T(x) = v \cdot x$ for some vector v.

Problem XC2.1-46. (Matrix of T)

(a) Let $T(x) = B(A(x))$ where

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Find the matrix of T.

(b) What is the matrix of T defined by $T(x) = B^2(A(x))$?

Problem XC2.2-18. (Reflection line equation)

Let a reflection T have matrix $\frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix}$. Find the equation for the line L of reflection.

Problem XC2.2-26. (Matrix of T)

(a) Find the scaling matrix A if $T \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

(b) Find the projection matrix A if $T \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

Problem XC2.2-39. (Composite linear transformations)

Each of the matrices below is a standard geometric linear transformation followed by a scaling. Find the scale factor.

- $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$
- $\begin{pmatrix} 6 & 0 \\ -2 & 6 \end{pmatrix}$
- $\begin{pmatrix} 3/4 & 1 \\ 1 & -3/4 \end{pmatrix}$

End of extra credit problems chapter 2.