1. (10 points) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$. Find a basis of vectors for each of the four fundamental subspaces.
2. (10 points) Assume $V=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$ with $\vec{v}_{1}=\left(\begin{array}{l}3 \\ 0 \\ 4 \\ 0\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$. Find the GramSchmidt orthonormal vectors \vec{q}_{1}, \vec{q}_{2} whose span equals V.
3. (10 points) Let Q be an orthonormal matrix. The normal equations for the system $Q \vec{x}=\vec{b}$ finds the least squares solution $\vec{v}=Q Q^{T} \vec{b}$. The equations imply that $P=Q Q^{T}$ projects \vec{b} onto the span of the columns of Q. For the subspace $V=\boldsymbol{\operatorname { s p a n }}\left(\vec{v}_{1}, \vec{v}_{2}\right)$ in the previous problem, find matrix P. This matrix projects \mathbb{R}^{4} onto V, while $I-P$ projects \mathbb{R}^{4} onto V^{\perp}.
4. (10 points) Find the least squares best fit line $y=v_{1} x+v_{2}$ for the points $(0,1),(2,3)$, $(4,4)$.
5. (5 points) Find the determinant of the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

6. (10 points) Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)$. Find all eigenpairs of A.
7. (10 points) Let $A=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$. Find all eigenpairs.
8. (15 points) Find an equation for the plane in \mathbb{R}^{3} that contains the three points $(1,0,0)$, $(1,1,1),(1,2,0)$.
9. (10 points) Suppose an $n \times n$ matrix A has all eigenvalues equal to 0 . Show from the Cayley-Hamilton Theorem that A^{n} has all entries equal to 0 .
10. (15 points) Prove the Cayley-Hamilton Theorem for 2×2 matrices with real eigenvalues. Write the characteristic equation as $\lambda^{2}+c 1 \lambda=-c_{2}$, then substitute as in the Cayley-Hamilton theorem, arriving at the proposed equation $A^{2}+c_{1} A=-c_{2} I$. Expand the left side:

$$
A^{2}+c_{1} A=A\left(A+c_{1} I\right)=A(A-(a+d) I)=-A \boldsymbol{\operatorname { a d j }}(A), \quad \operatorname{adj}(A)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Because $A \operatorname{adj}(A)=|A| I$ (the adjugate identity), then the right side of the preceding display simplifies to $-\operatorname{det}(A) I=-c_{2} I$. This proves the Cayley-Hamilton theorem for 2×2 matrices: $A^{2}+c_{1} A=-c_{2} I$.
11. (5 points) Suppose a 3×3 matrix A has eigenpairs

$$
\left(3,\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right), \quad\left(3,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right), \quad\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.
12. (10 points) Suppose a 3×3 matrix A has eigenpairs

$$
\left(3,\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right), \quad\left(3,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right), \quad\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

Find A.
13. (10 points) Assume A is 2×2 and Fourier's model holds:

$$
A\left(c_{1}\binom{1}{1}+c_{2}\binom{1}{-1}\right)=2 c_{2}\binom{1}{-1}
$$

Find A.
14. (10 points) How many eigenpairs? (a) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$, (b) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
15. (5 points) True or False? A Jordan block has one and only one eigenpair.
16. (5 points) True or False? A diagonal block matrix $A=\left(\begin{array}{rr}B_{1} & 0 \\ 0 & B_{2}\end{array}\right)$ where B_{1}, B_{2} are Jordan blocks has exactly two eigenpairs.

No new questions beyond this point.

