## ANSWERS

## Chapters 1 and 2

1. (5 points) Let $A$ be a $2 \times 2$ matrix such that $A\binom{1}{1}=\binom{1}{0}$. Compute $A\binom{2}{2}$.

Answer:
2. (5 points) State (1) the definition of norm, (2) the Cauchy-Schwartz inequality and (3) the triangle inequality, for vectors in $\mathcal{R}^{n}$.

## Answer:

3. (5 points) Define an Elementary Matrix. Display the fundamental matrix multiply equation which summarizes a sequence of swap, combo, multiply operations, transforming a matrix $A$ into a matrix $B$.

## Answer:

4. (5 points) Suppose $A=B(C+D) E$ and all the matrices are invertible. Find an equation for $C$.

## Answer:

5. (5 points) Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$. Show the details of two different methods for finding $A^{-1}$.

## Answer:

6. (5 points) Find a factorization $A=L U$ into lower and upper triangular matrices for the matrix $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$.

## Answer:

7. (5 points) Let $Q$ be a $2 \times 2$ matrix with $Q Q^{T}=I$. Prove that $Q$ has columns of unit length and its two columns are orthogonal.

## Answer:

## Chapters 3, 4

8. (5 points) Let $V$ be a vector space and $S$ a subset of $V$. State the Subspace Criterion, a theorem with three requirements, and conclusion that $S$ is a subspace of $V$.

## Answer:

9. (5 points) Explain how the span theorem applies to show that the set $S$ of all linear combinations of the functions $\cosh x, \sinh x$ is a subspace of the vector space $V$ of all continuous functions on $-\infty<x<\infty$.

## Answer:

10. (5 points) Write a proof that the subset $S$ of all solutions $\vec{x}$ in $\mathcal{R}^{n}$ to a homogeneous matrix equation $A \vec{x}=\overrightarrow{0}$ is a subspace of $\mathcal{R}^{n}$. This is called the kernel theorem.

## Answer:

11. (5 points) Using the subspace criterion, write two hypotheses that imply that a set $S$ in a vector space $V$ is not a subspace of $V$. The full statement of three such hypotheses is called the Not a Subspace Theorem.

## Answer:

12. (5 points) Report which columns of $A$ are pivot columns: $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$.

Answer:
13. (5 points) Find the complete solution $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ for the nonhomogeneous system

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right) .
$$

The homogeneous solution $\vec{x}_{h}$ is a linear combination of Strang's special solutions. Symbol $\vec{x}_{p}$ denotes a particular solution.

## Answer:

14. (5 points) Find the reduced row echelon form of the matrix $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2\end{array}\right)$.

## Answer:

15. (5 points) A $10 \times 13$ matrix $A$ is given and the homogeneous system $A \vec{x}=\overrightarrow{0}$ is transformed to reduced row echelon form. There are 7 lead variables. How many free variables?

## Answer:

16. (5 points) The rank of a $10 \times 13$ matrix $A$ is 7 . Find the nullity of $A$.

## Answer:

17. (5 points) Let $S$ be the subspace of $\mathbb{R}^{4}$ spanned by the vectors $\bar{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\bar{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)$. Find the Gram-Schmidt orthonormal basis of $S$.

## Answer:

18. (5 points) Let the linear transformation $T$ from $\mathcal{R}^{3}$ to $\mathcal{R}^{3}$ be defined by its action on three independent vectors: Given a basis

$$
T\left(\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right), T\left(\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right), T\left(\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
5 \\
1 \\
1
\end{array}\right) .
$$

Find the unique $3 \times 3$ matrix $A$ such that $T$ is defined by the matrix multiply equation $T(\vec{x})=A \vec{x}$.

Answer:
19. (5 points) Determine independence or dependence for the list of vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
4
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

## Answer:

20. (5 points) Use least squares to find the best fit line for the points $(1,2),(2,2),(3,0)$.

## Answer:

21. (5 points) Find all solutions to the system of equations

$$
\begin{aligned}
& 2 w+3 x+4 y+5 z=1 \\
& 4 w+3 x+8 y+5 z=2 \\
& 6 w+3 x+8 y+5 z=1
\end{aligned}
$$

## Answer:

22. (5 points) The spectral theorem says that a symmetric matrix $A$ can be factored into $A=Q D Q^{T}$ where $Q$ is orthogonal and $D$ is diagonal. Find $Q$ and $D$ for the symmetric matrix $A=\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)$.

## Answer:

23. (5 points) Show that if $B$ is an invertible matrix and $A$ is similar to $B$, with $A=P B P^{-1}$, then $A$ is invertible.

## Answer:

24. (5 points) Prove that the null space $S$ of an $m \times n$ matrix $M$ is a subspace of $\mathbb{R}^{n}$. This is called the Kernel Theorem, and it is proved from the Subspace Criterion.

## Answer:

25. (5 points) Let $A$ be an $m \times n$ matrix with independent columns. Prove that $A^{T} A$ is invertible.

## Answer:

26. (5 points) Let $A$ be an $m \times n$ matrix with $A^{T} A$ invertible. Prove that the columns of $A$ are independent.

Answer:
27. (5 points) Let $A$ be an $m \times n$ matrix. Denote by $S_{1}$ the row space of of $A$ and $S_{2}$ the column space of $A$. Prove that $T: S_{1} \rightarrow S_{2}$ defined by $T(\vec{x})=A \vec{x}$ is one-to-one and onto.

## Answer:

28. (5 points) Let $A$ be an $m \times n$ matrix and $\vec{v}$ a vector orthogonal to the nullspace of $A$. Prove that $\vec{v}$ must be in the row space of $A$.

## Answer:

29. (5 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.

## Answer:

30. (5 points) Display the equation for the Singular Value Decomposition (SVD), then cite the conditions for each matrix.

## Answer:

31. (5 points) Display the equation for the pseudo inverse of $A$, then define and document each matrix in the product.

## Answer:

