MATH 2270-2 Exam 2 S2012

NAME (please print):
No books or notes. No electronic devices, please.
These problems have credits 10 to 25 , which is an estimate of the time required to write the solution.

QUESTION	VALUE	SCORE
1	15	
2	25	
3	15	
4	20	
5	15	
6	10	
TOTAL	100	

1. (15 points) Let $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 2\end{array}\right)$. Find a basis of vectors for each of the four fundamental subspaces, which are the nullspaces of A, A^{T} and the column spaces of A, A^{T}.
2. (25 points) Assume $V=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ with $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$.

Find the Gram-Schmidt orthonormal vectors $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$ whose span equals V.
3. (15 points) Find the least squares best fit line $y=v_{1} x+v_{2}$ for the points $(1,1),(2,3)$, $(3,1),(4,4)$.
4. (20 points) Let $A=\left(\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right)$. Find all eigenpairs.
5. (15 points) Prove the Cayley-Hamilton Theorem for 2×2 matrices with real eigenvalues.
6. (10 points) How many eigenpairs for $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$?

No new questions beyond this point.

