NAME (please print): _____

No books or notes. No electronic devices, please.

These problems have credits 10 to 25, which is an estimate of the time required to write the solution.

QUESTION	VALUE	SCORE
1	15	
2	25	
3	15	
4	20	
5	15	
6	10	
TOTAL	100	

1. (15 points) Let $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix}$. Find a basis of vectors for each of the four fundamental subspaces, which are the nullspaces of A, A^T and the column spaces of A, A^T .

2. (25 points) Assume
$$V = \operatorname{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$$
 with $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$

Find the Gram-Schmidt orthonormal vectors $\vec{q_1}, \vec{q_2}, \vec{q_3}$ whose span equals V.

3. (15 points) Find the least squares best fit line $y = v_1x + v_2$ for the points (1, 1), (2, 3), (3, 1), (4, 4).

4. (20 points) Let
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$
. Find all eigenpairs.

5. (15 points) Prove the Cayley-Hamilton Theorem for 2×2 matrices with real eigenvalues.

6. (10 points) How many eigenpairs for $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$?

No new questions beyond this point.