MATH 2270-2 Exam $1 \quad$ Spring 2012

1. ($\mathbf{1 0}$ points) Give a counter example or explain why it is true. If A and B are $n \times n$ invertible, and C^{T} denotes the transpose of a matrix C, then $\left(A B^{-1}\right)^{T}=\left(B^{T}\right)^{-1} A^{T}$.
2. ($\mathbf{1 0}$ points) Give a counter example or explain why it is true. If square matrices A and B satisfy $A B=I$, then the transposes satisfy $A^{T} B^{T}=I$.
3. (10 points) Let A be a 3×4 matrix. Find the elimination matrix E which under left multiplication against A performs both (1) and (2) with one matrix multiply.
(1) Replace Row 2 of A with Row 2 minus Row 3 .
(2) Replace Row 3 of A by Row 3 minus 4 times Row 1 .
4. (30 points) Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & b & c \\
1 & c & -a \\
2 & b+c & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-a \\
a \\
a
\end{array}\right)
$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.
(a). The system has a unique solution for $(c-b)(2 a-c) \neq 0$.
(b). The system has no solution if $c=2 a$ and $a \neq 0$ (don't explain the other possibilities).
(c). The system has infinitely many solutions if $a=b=c=0$ (don't explain the other possibilities).

Continued
Definition. Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called independent provided solving the equation $c_{1} \vec{v}_{1}+\cdots+$ $c_{k} \vec{v}_{k}=\overrightarrow{0}$ for constants c_{1}, \ldots, c_{k} has the unique solution $c_{1}=\cdots=c_{k}=0$. Otherwise the vectors are called dependent.
5. (20 points) Classify the following sets of vectors as Independent or Dependent, using the Pivot Theorem or the definition of independence (above).

Set 1: $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$

$$
\text { Set 2: }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

6. (20 points) Find the vector general solution \vec{x} to the equation $A \vec{x}=\vec{b}$ for

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 4 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)
$$

End Exam 1.

