Math 2250
Maple Lab 8: Earthquake project
S2012

Name _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ Class Time _-_-_-_-_-_-_

Project 8. Solve problems L8.1 to L8.5. The problem headers:
--_-_ PROBLEM L8.1. EARHQUAKE MODEL FOR A BUILDING.
___-_- PROBLEM L8.2. TABLE OF NATURAL FREQUENCIES AND PERIODS.
___-_-_ PROBLEM L8.3. UNDETERMINED COEFFICIENTS STEADY-STATE SOL
__-_-_- PROBLEM L8.4. PRACTICAL RESONANCE.
-_-_-_ PROBLEM L8.5. EARTHQUAKE DAMAGE.

FIVE FLOOR Model.
Refer to the textbook of Edwards-Penney, section 7.4, page 437. Consider a building with five floors each weighing 50 tons. Each floor corresponds to a restoring Hooke's force with constant k=5 tons/foot. Assume that ground vibrations from the earthquake are modeled by (1/4)cos(wt) with period $T=2 * P i / w$.

PROBLEM L8.1. BUILDING MODEL FOR AN EARTHQUAKE.
Model the 5-floor problem in Maple.
Define the 5 by 5 mass matrix M and Hooke's matrix K for this system and convert $M x{ }^{\prime \prime}=K x$ into the system $x^{\prime \prime}=A x$ where A is defined by textbook equation (1), page 437.

Sanity check: Mass $m=3125$, and the $5 x 5$ matrix contains fraction $16 / 5$.

Then find the eigenvalues of the matrix A to six digits, using the
Maple command "eigenvals(A)."
Sanity check: All six eigenvalues should be negative.
\# Sample Maple code for a model with 4 floors.
\# Use maple help to learn about evalf and eigenvals.
\# A:=matrix([[-20, 10,0,0], [10,-20, 10, 0],
[0, 10, -20, 10] , [0, 0, 10, -10]]);
\# with(linalg) : evalf(eigenvals(A));
\# Problem L8. 1
\# Define k, m and the $5 x 5$ matrix A.
\# with(linalg): evalf(eigenvals(A));

PROBLEM L8.2. TABLE OF NATURAL FREQUENCIES AND PERIODS
Refer to figure 7.4.17, page 437.

Find the natural angular frequencies omega=sqrt(-lambda) for the five story building and also the corresponding periods 2PI/omega, accurate to six digits. Display the answers in a table . Compare with answers in Figure 7.4.17, page 437, for the 7-story case.
\# Sample code for a 4×3 table, 4-story building.
\# Use maple help to learn about nops and printf.

```
# ev:=[-10,-1.206147582,-35.32088886,-23.47296354]: n:=nops(ev):
# Omega:=lambda -> sqrt(-lambda):
# format:="%10.6f %10.6f %10.6f\n":
# seq(printf(format,ev[i],Omega(ev[i]),2*evalf(Pi)/Omega(ev[i])),
i=1..n);
# Problem L8.2
# ev:=[fill this in]: n:=nops(ev):
# Omega:=lambda -> sqrt(-lambda): format:="%10.6f %10.6f %10.6f\n":
#
seq(printf(format,ev[i],Omega(ev[i]),2*evalf(Pi)/Omega(ev[i])),i=1..n)
;
PROBLEM L8.3. UNDETERMINED COEFFICIENTS
            STEADY-STATE PERIODIC SOLUTION.
Consider the forced equation x'=Ax+cos(wt)b where b is a constant
vector. The earthquake's ground vibration is accounted for by the
extra term cos(wt)b, which has period T=2Pi/w.
The solution x(t) is the 5-vector of excursions from equilibrium
of the corresponding 5 floors.
Sought here is not the general solution, which certainly contains
transient terms, but rather the steady-state periodic solution, which
is known from the theory to have the form x(t)=cos(wt)c for some
vector c that depends only on A and b.
Define b:=0.25*W*W*vector([1,1,1,1,1]): in Maple and find the
vector c in the undetermined coefficients solution x(t)=cos(wt)c.
Vector c depends on w. As outlined in the textbook, vector c
can be found by solving the linear algebra problem -w^2 c = Ac + b;
see page 433. Don't print c, as it is too complex; instead, print
c[1] as an illustration.
#Sample code for defining b and A, then solving for c
#in the 4-floor case.
# See maple help to learn about vector and linsolve.
# w:='W': u:=w*W: b:=0.25*u*vector([1,1,1,1]):
# A:=matrix([ [-20,10,0,0], [10, -20,10,0],
[0,10,-20, 10],[0,0,10, -10]]);
# Au:=evalm(A+u*diag(1,1,1,1));
# c:=linsolve(Au,-b):
# evalf(c[1],2);
# PROBLEM L8.3
# Define w, u, b, A, Au, c
# evalf(c[1],2);
PROBLEM L8.4. PRACTICAL RESONANCE.
Consider the forced equation \(x^{\prime}=A x+\cos (w t) b\) of \(L 8.3\) above with \(\mathrm{b}:=0.25 * \mathrm{w} * \mathrm{w} *\) vector \(([1,1,1,1,1])\).
Practical resonance can occur if a component of \(x(t)\) has large amplitude compared to the vector norm of \(b\). For example, an earthquake might cause a small 3-inch excursion on level ground, but the building's floors might have 50-inch excursions, enough to destroy
```

the building.

Let $\operatorname{Max}(c)$ denote the maximum modulus of the components of vector c Plot $g(T)=\operatorname{Max}(c(w))$ with $w=(2 * P i) / T$ for periods $T=1$ to $T=5$, ordinates Max=0 to Max=10, the vector $c(w)$ being the answer produced in L8.3 above. Compare your figure to the textbook Figure 7.4.18, page 438.
\# Sample maple code to define the function $\operatorname{Max}(c), 4-f l o o r ~ b u i l d i n g . ~$
\# Use maple help to learn about norm, vector, subs and linsolve.
\# with(linalg):
\# w:='w': Max:= c -> norm(c,infinity) ; u:=w*w:
\# b:=0.25*W*W*vector ([1, 1, 1, 1]):
\# A:=matrix ([$[-20,10,0,0],[10,-20,10,0],[0,10,-20,10]$,
[0, 0, 10, -10]]);
\# $A u:=e v a l m(A+u * \operatorname{diag}(1,1,1,1))$;
\# C:=ww \rightarrow subs(w=ww,linsolve (Au, -b)):
\# $\operatorname{plot}(\operatorname{Max}(\mathrm{C}(2 * \mathrm{Pi} / \mathrm{r})), r=1.5,0 \ldots 10$, numpoints=150);
\# PROBLEM L8.4. WARNING: Save your file often!!!
\# w:='w': Max:= c -> norm(c,infinity): u:=w*w:
\# Define b
\# Define A
\# Define Au
\# Define C
\# plot(Max (C(2*Pi/r)),r=1..5,0..10,numpoints=150);

PROBLEM L8.5. EARTHQUAKE DAMAGE.
The maximum amplitude plot of L 8.4 can be used to detect the of earthquake damage for a given ground vibration of period T. A ground vibration (1/4) cos(wt), $\mathrm{T}=2 * \mathrm{Pi} / \mathrm{w}$, will be assumed, as in L8.4.
(a) Replot the amplitudes in L8.4 for periods 1.5 to 5.5 and amplitudes 5 to 10 .
There will be several spikes.
(b) Create several zoom-in plots, one for each spike, choosing a T-interval that shows the full spike.
(c) Determine from the several zoom-in plots approximate intervals for the period T such that some floor in the building will undergo excursions from equilibrium in excess of 5 feet.
\# Example: Zoom-in on a spike for amplitudes 5 feet to 10 feet, \#periods 1.97 to 2.01. This example for the 4 -floor problem.
\#with(linalg): w:='w': Max:= c -> norm(c,infinity); u:=w*w:
\#Au:=matrix ([[-20+u, 10, 0, 0], [10, -20+u, 10, 0],
$[0,10,-20+u, 10],[0,0,10,-10+u]])$;
\#b: $=0.25 *_{\mathrm{w}} * \mathrm{w} * \operatorname{vector}([1,1,1,1])$:
\#C:=ww -> subs(w=ww,linsolve (Au,-b)):
\#plot $(\operatorname{Max}(\mathrm{C}(2 * \mathrm{Pi} / \mathrm{r})), \mathrm{r}=1.97 . .2,01,5 \ldots 10$, numpoints=150);
\# PROBLEM L8.5. WARNING: Save your file often!!
\#(a) Re-plot the five spikes.
\# plot(Max (C(2*Pi/r)),r=1.5..5.5,5..10,numpoints=150);
\#(b) Plot five zoom-in graphs.
\# one:=1.79..1.83:plot $(\operatorname{Max}(\mathrm{C}(2 * \operatorname{Pi} / r)), r=o n e, 5 \ldots 10$, numpoints=150);
\# two:=???:plot $(\operatorname{Max}(\mathrm{C}(2 * \operatorname{Pi} / r)), r=t w o, 5 . .10$, numpoints=150);
\# three:=???:plot $(\operatorname{Max}(\mathrm{C}(2 * \operatorname{Pi} / r)), r=t h r e e, 5 \ldots 10$, numpoints=150);
\# four:=???:plot(Max(C(2*Pi/r)),r=four,5..10, numpoints=150);
\# five:=???:plot $(\operatorname{Max}(C(2 * P i / r)), r=f i v e, 5 . .10$, numpoints=150);
\#(c) Print period ranges.
\# PeriodRanges:=[one,two,three,four,five];

