\qquad

Math 2250 Extra Credit Problems Chapter 6 S2012

Due date: The due date for these problems is week 13. Records are locked on that date and only corrected, never appended. Credits earned here apply only to chapter 6 and not to any other chapter.
Maple labs 6 and 7 do not have extra credit problems.
Submitted work. Please submit one stapled package per problem. Kindly label problems Extra Credit. Label each problem with its corresponding problem number, e.g., Xc6.1-36. You may attach this printed sheet to simplify your work.

Problem Xc6.1-12. (Eigenpairs of a 2×2)
Let $A=\left(\begin{array}{rr}9 & -10 \\ 2 & 0\end{array}\right)$. Find the eigenpairs of A. Then report eigenpair packages P and D such that $A P=P D$.

Problem Xc6.1-20. (Eigenpairs of a 3×3)

Let $A=\left(\begin{array}{lll}5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2\end{array}\right)$. Find the eigenpairs of A. Then report eigenpair packages P and D such that $A P=P D$.
Problem Xc6.1-32. (Complex eigenpairs of a 2×2)
Let $A=\left(\begin{array}{rr}0 & -6 \\ 24 & 0\end{array}\right)$. Find the eigenpairs of A. Then report eigenpair packages P and D such that $A P=P D$.

Problem Xc6.1-36. (Eigenvalues of band matrices)

Find the eigenvalues of the matrix A below without the aid of computers.

$$
A=\left(\begin{array}{llllll}
1 & 2 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & 0 & 0 & 0 \\
0 & 2 & 1 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Problem Xc6.2-6. (Eigenpair packages of a 3×3)

Let $A=\left(\begin{array}{lll}2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1\end{array}\right)$. Find the eigenpairs of A. Then report eigenpair packages P and D such that $A P=P D$.
Check the answer by hand, expanding both products $A P$ and $P D$, finally showing equality.

Problem Xc6.2-18. (Fourier's model for a 3×3)
Assume Fourier's model for a certain matrix A :

$$
A\left(c_{1}\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)=3 c_{1}\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Find A explicitly from $A P=P D$. Check your answer by finding the eigenpairs of A.
Problem Xc6.2-28. (Eigenpairs and diagonalization of a 4×4)

Determine the eigenpairs of A below. If diagonalizable, then report eigenpair packages P and D such that $A P=P D$.

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
2 & 1 & 2 & 0 \\
0 & 2 & 1 & 2 \\
0 & 0 & 0 & 13
\end{array}\right)
$$

End of extra credit problems chapter 6.

