The No Slution Case

- No Solution Case
- An Example
- An Illustration of the No Solution Case
- Perplexing Frames

No Solution Case

A signal equation is a nonzero equation having no variables. It is typically encountered in frame sequences as the equation $0=1$.
When a signal equation occurs in a frame sequence, then we report no solution, because a signal equation is a false equation, implying that the system of equations cannot have a solution.
An Example

$$
\begin{array}{rr}
x+2 y+3 z & =4 \\
-y-3 z & =-1 \\
0 & =1
\end{array} \quad \quad \text { Signal Equation } 0=1
$$

An Illustration of the No Solution Case

\qquad

$\begin{array}{r} y+3 z=2 \\ x+y=3 \\ x+2 y+3 z=4 \end{array}$	Frame 1. Original system
$\begin{aligned} x+2 y+3 z & =4 \\ x+y & =3 \\ y+3 z & =2 \end{aligned}$	Frame 2. swap (1,3)
$\begin{aligned} x+2 y+3 z & =4 \\ -y-3 z & =-1 \\ y+3 z & =2 \end{aligned}$	Frame 3. combo (1, 2,-1)
$\begin{aligned} x+2 y+3 z & =4 \\ -y-3 z & =-1 \\ 0 & =1 \end{aligned}$	Frame 4. Signal Equation $0=1$. combo ($2,3,1$)

The signal equation $\mathbf{0}=\mathbf{1}$ is a false equation, therefore the last frame has no solution. Because the toolkit neither creates nor destroys solutions, then the first frame, which is the original system, has no solution.

Perplexing Frames

Values cannot be assigned to any variables in the case of no solution. This can be perplexing, especially in a final frame like

$$
\begin{aligned}
& x=4 \\
& z=-1 \\
& 0=1
\end{aligned}
$$

While it is true that \boldsymbol{x} and \boldsymbol{z} were assigned values, the final signal equation $\mathbf{0}=\mathbf{1}$ is false, meaning any answer is impossible.

There is no possibility to write equations for all variables. There is no solution. It is a tragic error to claim $x=4, z=-1$ is a solution.

