Introduction to Linear Algebra 2270-3
 Sample Midterm Exam 3 Fall 2008
 Exam Date: Wednesday, 2 December 2008

Instructions. The exam is 50 minutes. Calculators are not allowed. Books and notes are not allowed. The sample exam has too many problems by perhaps a factor of three. Expect midterm 3 to have only problem types selected from the ones represented here.

1. (Orthogonality, Gram-Schmidt) Complete all.
(1a) [25\%] Find the orthogonal projection of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ onto $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)\right\}$.
(1b) $[25 \%]$ Find the $Q R$-factorization of $A=\left(\begin{array}{ll}1 & 0 \\ 7 & 7 \\ 1 & 2\end{array}\right)$.
(1c) [25\%] Prove that the product $A B$ of two orthogonal matrices A and B is again orthogonal.
(1d) $[25 \%]$ Fit $c_{0}+c_{1} x$ to the data points $(0,2),(1,0),(2,1),(3,1)$ using least squares. Sketch the solution and the data points as an answer check. This is a 2×2 system problem, and should take only 1-3 minutes to complete.
(1e) [25\%] Prove that $\operatorname{im}\left(A^{T} B^{T}\right)=\operatorname{ker}(B A)^{\perp}$, when matrix product $B A$ is defined.
(1f) [25\%] Prove that the span of the Gram-Schmidt vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ equals exactly the span of the independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ used to construct them.
2. (Determinants) Complete two.
(2a) [25\%] Given a 7×7 matrix A with each entry either a zero or a one, then what is the least number of zero entries possible such that A is invertible?
(2b) [25\%] Find A^{-1} by two methods: the classical adjoint method and the rref method applied to $\operatorname{aug}(A, I)$:

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

(2c) [25\%] Let 4×4 matrix A be invertible and assume $\operatorname{rref}(A)=E_{3} E_{2} E_{2} A$. The elementary matrices E_{1}, E_{2}, E_{3} represent combo $(1,3,-15)$, swap $(1,4)$, mult $(2,-1 / 4)$, respectively. Find $\operatorname{det}(A)$.
(2c) [25\%] Assume given 3×3 matrices A, B. Suppose $E_{5} E_{4} B=E_{3} E_{2} E_{1} A$ and $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ are elementary matrices representing respectively a swap, a combination, a multiply by 3 , a swap and a multiply by 7 . Assume $\operatorname{det}(A)=5$. Find $\operatorname{det}\left(5 A^{2} B\right)$.
(2c) [25\%] Let 3×3 matrix A be invertible and assume $\operatorname{rref}(A)=E_{3} E_{2} E_{2} A$. The elementary matrices E_{1}, E_{2}, E_{3} represent combo $(1,3,-5), \operatorname{swap}(1,3)$, mult $(2,-2)$, respectively. Find $\operatorname{det}\left(A^{T} A^{2}\right)$.
(2d) [25\%] Let $C+B^{2}+B A=A^{2}+A B$. Assume $\operatorname{det}(A-B)=4$ and $\operatorname{det}(C)=5$. Find $\operatorname{det}(C A+C B)$.
(2e) [25\%] Determine all values of x for which A^{-1} fails to exist: $A=\left(\begin{array}{ccc}1 & 2 x-1 & 0 \\ 2 & 3 & 0 \\ 5 x & -44 x & 64 x^{2}\end{array}\right)$.
(25) [25\%] Apply the adjugate formula for the inverse to find the value of the entry in row 2, column 3 of A^{-1}, given A below. Other methods are not acceptable.

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
-1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 2
\end{array}\right)
$$

(2g) [25\%] Let B be the invertible matrix given below, where ? means the value of the entry does not affect the answer to this problem. The second matrix C is the adjugate (or adjoint) of B. Let A be a matrix such that $B C^{T}\left(A^{2} C^{3}+B^{2} C A^{T}\right)=0$. Find all possible values of $\operatorname{det}(A)$.
Notation: X^{T} is the transpose of X. And X^{2} means $X X$.

$$
B=\left(\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
1 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 \\
1 & 0 & 0 & 4
\end{array}\right), \quad C=\left(\begin{array}{rrrr}
8 & ? & 4 & 0 \\
? & ? & -4 & 0 \\
-4 & ? & 8 & ? \\
? & -3 & ? & ?
\end{array}\right)
$$

(2h) [25\%] Solve for z in $A \mathbf{u}=\mathbf{b}$ by Cramer's rule. Other methods are not acceptable.

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 0 & 4 \\
5 & 6 & 8
\end{array}\right), \quad \mathbf{u}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

