Applied Linear Algebra 2270-3 Midterm Exam 1 Wednesday, 7 October, 2008

Instructions: This in-class exam is designed for 50 minutes. No tables, notes, books or calculators allowed.

1. (Inverse of a matrix) Supply details for one of these:
a. If A and B are $n \times n$ invertible, then $(A B)^{-1}=A^{-1} B^{-1}$ can be false.
\mathbf{b}. If square matrices A and B satisfy $A B=I$, then $A \mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x} for each vector \mathbf{b}.

Please staple this page to your solution. Write your initials on all pages.
2. (Elementary Matrices) Let A be a 3×3 matrix. Let

$$
F=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Assume F is obtained from A by the following sequential row operations: (1) Swap rows 2 and 3 ; (2) Add -2 times row 2 to row 3; (3) Add 3 times row 1 to row 2; (4) Multiply row 2 by -3 .
a. Write a matrix multiplication formula for F in terms of explicit elementary matrices and the matrix A. (80\%)
b. Find A. (20%)

Please staple this page to your solution. Write your initials on all pages.

3. (RREF method)

Part I. State a theorem about non-homogeneous systems $A \mathbf{x}=\mathbf{b}$ which concludes that the $n \times n$ system has a unique solution. Then supply a proof of the theorem. [20\%]
Part II. Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & 2 b-c & -a \\
1 & c & a \\
2 & 2 b & -a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
a \\
-a \\
-a
\end{array}\right)
$$

(a). Determine those values of a, b and c such that the system has a unique solution. (40\%)
(b). Determine those values of a, b and c such that the system has no solution. (20\%)
(c). Determine those values of a, b and c such that the system has infinitely many solutions. (20\%)

To save time, don't attempt to solve the equations or to produce a complete frame sequence.

Please staple this page to your solution. Write your initials on all pages.

4. (Matrix algebra)

Do one of these:
a. Let A be a 4×3 matrix and B a 3×4 matrix. Explain using matrix algebra and the three possibilities why $\operatorname{rref}(A B)=I$ cannot happen.
b. For $n \times n$ matrices A, B, C assume that $A B=C^{2}, A C=I, A B C=B$. Prove that $A^{3} B=I$.

Please staple this page to your solution. Write your initials on all pages.

5. (Geometry and linear transformations)

Part I. Classify $T(\mathbf{x})=A \mathbf{x}$ geometrically as scaling, projection onto line L, reflection in line L, pure rotation by angle θ, rotation composed with scaling, horizontal shear, vertical shear. Define angle θ where applicable. [60\%]
a. $A=\left(\begin{array}{rr}0 & -3 \\ 3 & 0\end{array}\right)$
b. $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
c. $A=\frac{1}{4}\left(\begin{array}{rr}3 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$
d. $A=\frac{1}{2}\left(\begin{array}{rr}-\sqrt{3} & 1 \\ 1 & \sqrt{3}\end{array}\right)$
e. $A=\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)$

Part II. Give details. [40\%]
f. Define reflection in a line L with unit direction \mathbf{u}.
g. Display the 3×3 matrix A of a projection onto a line L through $(0,0,0)$ in unit direction $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$.
h. Display the 2×2 matrix A of a planar rotation clockwise by angle θ.

Please staple this page to your solution. Write your initials on all pages.

