Applied Linear Algebra 2270-2

Sample Midterm Exam 1
Thursday, 25 Feb 2010

Instructions: This in-class exam is designed for 50 minutes. No tables, notes, books or calculators allowed.

1. (Inverse of a matrix) Supply details for two of these:
a. If A and B are $n \times n$ invertible, then $(A B)^{-1}=B^{-1} A^{-1}$.
b. If possibly non-square matrices A and B satisfy $A B=I$, then $B \mathbf{x}=\mathbf{0}$ cannot have infinitely many solutions.
c. Give an example of a 4×3 system having a unique solution.

Please staple this page to your solution. Write your initials on all pages.
2. (Elementary Matrices) Let A be a 3×3 matrix. Let

$$
F=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Assume F is obtained from A by the following sequential row operations: (1) Swap rows 1 and 3 ; (2) Add -2 times row 2 to row 3; (3) Add 3 times row 1 to row 2; (4) Multiply row 2 by 5 .
a. Write a matrix multiplication formula for F in terms of explicit elementary matrices and the matrix A. (80\%)
b. Find A. (20\%)

Please staple this page to your solution. Write your initials on all pages.

3. (RREF method)

Part I. State a theorem about homogeneous systems which concludes that the $m \times n$ system has at least one nonzero solution. Then supply a proof of the theorem. [20\%]
Part II. Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & b-c & a \\
1 & c & -a \\
2 & b & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-a \\
a \\
a
\end{array}\right)
$$

a. Determine those values of a, b and c such that the system has a unique solution. (40\%)
b. Determine those values of a, b and c such that the system has no solution. (20\%)
c. Determine those values of a, b and c such that the system has infinitely many solutions. (20\%)

To save time, don't attempt to solve the equations or to produce a complete frame sequence.

Please staple this page to your solution. Write your initials on all pages.

4. (Matrix algebra)

Do two of these:
a. Find all 2×2 matrices A such that $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) A=A\left(\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right)+A$.
b. Let A be a 3×2 matrix and B a 2×3 matrix. Explain using matrix algebra and the three possibilities why the 3×3 matrix $C=A B$ cannot satisfy $\operatorname{rref}(C)=I$.
c. For 2×2 matrices A, B, prove that $(A+B)(A-B)=A^{2}-B^{2}$ implies that A and B commute.

Please staple this page to your solution. Write your initials on all pages.

5. (Geometry and linear transformations)

Part I. Classify $T(\mathbf{x})=A \mathbf{x}$ geometrically as scaling, projection onto line L, reflection in line L, pure rotation by angle θ, rotation composed with scaling, horizontal shear, vertical shear. [60\%]
a. $A=\left(\begin{array}{rr}0 & -2 \\ 2 & 0\end{array}\right)$
b. $A=\left(\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right)$
c. $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
d. $A=\frac{1}{4}\left(\begin{array}{rr}3 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$
e. $A=\frac{1}{2}\left(\begin{array}{rr}-\sqrt{3} & 1 \\ 1 & \sqrt{3}\end{array}\right)$

Part II. Give details. [40\%]
f. Define reflection in a line L in \mathcal{R}^{3}.
g. Display the matrix A of a projection onto a line L in \mathcal{R}^{3}.
h. Define rotation clockwise by angle θ in \mathcal{R}^{2}.

Please staple this page to your solution. Write your initials on all pages.

