Differential Equations 2280 Midterm Exam 3 Wednesday, 22 April 2009

Instructions: This in-class exam is 15 minutes. Do one problem only. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%. Each problem is scored 100 .
Please discard this sheet after reading it.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

1. (ch7) Do enough to make 100%
(1a) [50\%] Derive the formula $\frac{d}{d s} \mathcal{L}(f(t))=\mathcal{L}(-t f(t))$.
(1b) [50\%] Solve $x^{\prime \prime}+2 x^{\prime}=0, x(0)=0, x^{\prime}(0)=1$ by Laplace's Method.
(1c) [50%] Solve the system $x^{\prime}=x+y, y^{\prime}=-y, x(0)=1, y(0)=2$ by Laplace's Method.

Answer: (1a) $\frac{d}{d s} \mathcal{L}(f(t))=\frac{d}{d s} \int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} f(t) \frac{d}{d s}\left(e^{-s t}\right) d t=\int_{0}^{\infty} f(t)(-t) e^{-s t} d t=$ $\mathcal{L}(f(t)(-t))$.
(1b) $L(x)=1 /\left(s^{2}+2 s\right)=\frac{a}{s}+\frac{b}{s+2}=\mathcal{L}\left(a+b e^{-2 t}\right)$ implies $x(t)=a+b e^{-2 t}$. Partial fractions applied to $\frac{1}{s^{2}+2 s}=\frac{a}{s}+\frac{b}{s+2}$ implies $a=1 / 2, b=-1 / 2$.
(1c) Transform the equations with \mathcal{L} and collect into a 2×2 system for $\mathcal{L}(x), \mathcal{L}(y)$. A shortcut is Laplace's resolvent method. Then

$$
\left(\begin{array}{rr}
s-1 & -1 \\
0 & s+1
\end{array}\right)\binom{\mathcal{L}(x)}{\mathcal{L}(y)}=\binom{1}{2} .
$$

Solve by Cramer's rule to obtain $\mathcal{L}(x)=\frac{s+3}{(s-1)(s+1)}, \mathcal{L}(y)=\frac{2}{s+2}$. Then partial fractions and the backward Laplace table imply $x(t)=2 e^{t}-e^{-t}, y(t)=2 e^{-t}$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
2. (ch5) Do both

The eigenanalysis method says that the system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution $\mathbf{x}(t)=$ $c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}+c_{4} \mathbf{v}_{4} e^{\lambda_{4} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3,4$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{llll}
5 & 1 & 1 & 0 \\
1 & 5 & 1 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

then
(2a) [75\%] Display eigenanalysis details for A.
(2b) [25\%] Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Answer: (2a) Use cofactor expansion on the last row of $\operatorname{det}(A-\lambda I)$ to obtain the expansion $(7-\lambda)^{2}(4-\lambda)(6-\lambda)$. Then $\lambda=4,6,7,7$. Three sequences of rref computations are required on augmented matrices constructed from $A-4 I, A-6 I, A-7 I$ to find the eigenpairs

$$
\begin{aligned}
& \left(4,\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right)\right),\left(6,\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)\right),\left(7,\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right),\left(7,\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)\right) . \\
& (2 b) \mathbf{x}(t)=c_{1} e^{4 t}\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right)+c_{2} e^{6 t},\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+c_{3} e^{7 t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)+c_{4} e^{7 t}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) .
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
3. (ch5) Do enough to make 100%
(3a) [50\%] The eigenvalues are 3, 5 for the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]$.
Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to Putzer's spectral formula. Don't expand matrix products, in order to save time. However, do compute the coefficient functions r_{1}, r_{2}.
(3b) $[50 \%]$ Using the same matrix A from part (a), display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-Hamilton Method. To save time, write out the system to be solved for the two vectors, and then stop, without solving for the vectors.
(3c) [50\%] Using the same matrix A from part (a), compute the exponential matrix $e^{A t}$) by any known method, for example, the formula $e^{A t}=\Phi(t) \Phi^{-1}(0)$.

Answer: (3a) $\mathbf{u}(t)=e^{A t} \mathbf{x}(0), e^{A t}=e^{3 t} I+\frac{e^{3 t}-e^{5 t}}{3-5}(A-3 I)$. Functions r_{1}, r_{2} are computed from $r_{1}^{\prime}=3 r_{1}, r_{1}(0)=1, r_{2}^{\prime}=5 r_{2}+r_{1}, r_{2}(0)=0$.
(3b) $\mathbf{u}(t)=e^{3 t} \overrightarrow{\mathbf{c}}_{1}+e^{5 t} \overrightarrow{\mathbf{c}}_{2}$. Differentiate once and use $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}$, then set $t=0$. The resulting system is

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}_{0}=e^{0} \overrightarrow{\mathbf{c}}_{1}+e^{0} \overrightarrow{\mathbf{c}}_{2} \\
& A \overrightarrow{\mathbf{u}}_{0}=3 e^{0} \overrightarrow{\mathbf{c}}_{1}+5 e^{0} \overrightarrow{\mathbf{c}}_{2}
\end{aligned}
$$

(3c) From Putzer's result of (3a),

$$
e^{A t}=\frac{1}{2}\left(\begin{array}{cc}
\mathrm{e}^{3 t}+\mathrm{e}^{5 t} & \mathrm{e}^{5 t}-\mathrm{e}^{3 t} \\
\mathrm{e}^{5 t}-\mathrm{e}^{3 t} & \mathrm{e}^{3 t}+\mathrm{e}^{5 t}
\end{array}\right)
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
4. (ch5) Do both
(4a) [50\%] Display the solution of $\mathbf{u}^{\prime}=\left(\begin{array}{ll}3 & 1 \\ 0 & 1\end{array}\right) \mathbf{u}, \mathbf{u}(0)=\binom{0}{2}$ according to the Laplace Resolvent Method.
(4b) [50\%] Display the variation of parameters formula for the system below, given $e^{A t}=\left(\begin{array}{rr}e^{2 t} & e^{2 t}-e^{t} \\ 0 & e^{t}\end{array}\right)$. Then integrate to find $\mathbf{u}_{p}(t)$ for $\mathbf{u}^{\prime}=A \mathbf{u}$.

$$
\mathbf{u}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right) \mathbf{u}+\binom{e^{t}}{0}
$$

Answer: (4a) The resolvent equation $(s I-A) \mathcal{L}(\overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{u}}(0)$ is the system

$$
\left(\begin{array}{rr}
s-3 & -1 \\
0 & s-1
\end{array}\right)\binom{\mathcal{L}(x)}{\mathcal{L}(y)}=\binom{0}{2} .
$$

The system is solved by Cramer's rule for unknowns $\mathcal{L}(x), \mathcal{L}(y)$ to obtain

$$
\mathcal{L}(x)=\frac{2}{(s-3)(s-1)}, \quad \mathcal{L}(y)=\frac{2}{s-1} .
$$

Partial fractions $\frac{2}{(s-3)(s-1)}=\frac{a}{s-3}+\frac{b}{s-1}$ and the backward Laplace table imply

$$
x(t)=a e^{3 t}+b e^{t}, \quad y(t)=2 e^{t} .
$$

The values of the constants are $a=1, b=-1$.
(4b) $\overrightarrow{\mathbf{u}}_{p}(t)=e^{A t} \int_{0}^{t} e^{-A u}\binom{e^{u}}{0} d u=e^{A t} \int_{0}^{t}\binom{e^{-u}}{0} d u=\binom{e^{t}-1}{0}$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
5. (ch6) Do enough to make 100%
(5a) [30\%] Define asymptotically stable equilibrium for $\mathbf{u}^{\prime}=\mathbf{f}(\mathbf{u})$, a nonlinear 2dimensional system in which \mathbf{f} is continuously differentiable.
(5b) [30\%] Give an example of a linear 2-dimensional system with a stable spiral at equilibrium point $x=y=0$. Draw a representative phase diagram about $x=y=0$. (5c) [40\%] Give an example of a nonlinear 2-dimensional system with exactly two equilibria.
(5d) [40\%] Display a formula for the general solution of the equation $\mathbf{u}^{\prime}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) \mathbf{u}$.
Then explain why the system has a center at $(0,0)$.

Answer: (5a) It is a constant solution $t \rightarrow \overrightarrow{\mathbf{u}}_{0}$. The equilibrium solution must be stable. Further, $\lim _{t \rightarrow \infty}\left\|\overrightarrow{\mathbf{u}}(t)-\overrightarrow{\mathbf{u}}_{0}\right\|=0$ for all solutions $\overrightarrow{\mathbf{u}}(t)$ such that $\left\|\overrightarrow{\mathbf{u}}(0)-\overrightarrow{\mathbf{u}}_{0}\right\|$ is sufficiently small.
(5b) Required are characteristic roots like $-1 \pm i$. Let $A=\left(\begin{array}{rr}-1 & 1 \\ -1 & -1\end{array}\right)$. Then $\operatorname{det}(A-$ $\lambda I)=(\lambda+1)^{2}+1$, which gives the desired roots and classification of a stable spiral.
(5c) There are many examples, but none of them are linear $\mathbf{u}^{\prime}=A \mathbf{u}$, because in this case $\operatorname{det}(A) \neq 0$ is required for classification, and then $(0,0)$ is the only equilibrium point. Example: The nonlinear system $x^{\prime}=y, y^{\prime}=x(x-1)$ has exactly two equilibrium points $(0,0),(1,0)$.
(5d) The characteristic equation $\operatorname{det}(A-\lambda I)=0$ is $\lambda^{2}+1=0$ with complex roots $\pm i$ and corresponding atoms $\cos t, \sin t$. Then the Cayley-Hamilton Method implies

$$
\overrightarrow{\mathbf{u}}(t)=\cos t \overrightarrow{\mathbf{c}}_{1}+\sin t \overrightarrow{\mathbf{c}}_{2} .
$$

First explanation, why the classification is a center. Such solutions are 2π-periodic and wrap around the origin. Trajectories form either an ellipse or a circle, depending on initial data. Second explanation, why the classification is a center. The answer is a spiral or an ellipse, because of the complex roots, which indicate wrapping of the trajectories around the origin. It can't be a spiral, because the solution formula does not limit to the zero vector at either $t=\infty$ nor $t=-\infty$. So it must be a center.

Use this page to start your solution. Attach extra pages as needed, then staple.

