Differential Equations 2280 Midterm Exam 3 Wednesday, 22 April 2009

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%. Each problem is scored 100.

Please discard this sheet after reading it.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

1. (ch7) Arrowsmith [Page]
(a) [25\%] Display the integral formula for the direct Laplace Transform of $\frac{t}{1+t}$. Explain why the integral exists, citing theorems.
(b) [25\%] Derive the formula $\mathcal{L}\left(f^{\prime}(t)\right)=s \mathcal{L}(f(t))-f(0)$.
(c) [50\%] Solve $x^{\prime \prime \prime}+3 x^{\prime \prime}+2 x^{\prime}=0, x(0)=x^{\prime}(0)=0, x^{\prime \prime}(0)=1$ by Laplace's Method.
(d) [50\%] Solve the system $x^{\prime}=x+y, y^{\prime}=x, x(0)=1, y(0)=0$ by Laplace's Method.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
2. (ch5) Cummings [Beattie]

The eigenanalysis method says that the system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution $\mathbf{x}(t)=$ $c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{lll}
5 & 1 & 1 \\
1 & 5 & 1 \\
0 & 0 & 7
\end{array}\right]
$$

then
(a) [75\%] Display eigenanalysis details for A.
(b) $[25 \%]$ Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
3. (ch5) Karrens [Harris]
(a) [50\%] The eigenvalues are $2,3,4,5$ for the matrix $A=\left[\begin{array}{rrrr}4 & 1 & -1 & 0 \\ 1 & 4 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 4\end{array}\right]$.

Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to Putzer's spectral formula. Don't expand matrix products, in order to save time. However, do compute the coefficient functions r_{1}, r_{2}, r_{3}. Given below is the answer for r_{4}, to shorten the computation.

$$
r_{4}(t)=-\frac{1}{6} e^{2 t}+\frac{1}{2} e^{3 t}-\frac{1}{2} e^{4 t}+\frac{1}{6} e^{5 t} .
$$

(b) [50\%] Using the same matrix A from part (a), display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-Hamilton Method. To save time, write out the system to be solved for the four vectors, and then stop, without solving for the vectors.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
4. (ch5) Wyatt [Williams]
(a) [50\%] Display the solution of $\mathbf{u}^{\prime}=\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right) \mathbf{u}$ according to the Laplace Resolvent Method. To save time, do not evaluate the constants in partial fractions.
(b) [50\%] Display the solution of $\mathbf{u}^{\prime}=\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right) \mathbf{u}$ according to the Eigenanalysis Method.
(c) $[50 \%]$ Display the exponential matrix $e^{A t}$ for the system $\mathbf{u}^{\prime}=\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right) \mathbf{u}$.
(d) [50\%] Display the variation of parameters formula for the system below, but do not do any integrations, in order to save time.

$$
\mathbf{u}^{\prime}=\left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right) \mathbf{u}+\binom{e^{-t}}{0}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
5. (ch6) Bennett [Osborne]
(a) [30\%] Define stable equilibrium for $\mathbf{u}^{\prime}=\mathbf{f}(\mathbf{u})$, a nonlinear 2-dimensional system in which \mathbf{f} is continuously differentiable.
(b) [40\%] Give an example of a linear 2-dimensional system with a stable spiral at equilibrium point $x=y=0$. Draw a representative phase diagram about $x=y=0$. (c) [40\%] Give an example of a linear 2-dimensional system with a stable center at equilibrium point $x=y=0$. Draw a representative phase diagram about $x=y=0$. (d) [40\%] Give an example of a linear 2-dimensional system with an unstable saddle at equilibrium point $x=y=0$. Draw a representative phase diagram about $x=y=0$. (e) $[30 \%]$ Assume a 2-dimensional predator-prey system $\mathbf{u}^{\prime}=\mathbf{f}(\mathbf{u})$ has equilibrium points $(0,0),(160,0),(0,180)$ and $(100,90)$. Explain the possible physical meanings of the equilibria, e.g., extinction, explosion, carrying capacity.

Use this page to start your solution. Attach extra pages as needed, then staple.

