
Applied Differential Equations 2280

Sample Final Exam

Wednesday, 6 May 2009, 7:30-10:15am

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books.
No answer check is expected. Details count 75%. The answer counts 25%.

1. (Quadrature Equation)

Solve for the general solution y(x) in the equation y′ = 2 cot x+
1250x3

1 + 25x2
+x ln(1+x2).

[The required integration talent includes basic formulae, integration by parts, substitution
and college algebra.]

Answer:

y = 2 ln (sin (x)) +
49

2
x2 − ln

(
1 + 25 x2

)
+ 1/2

(
1 + x2

)
ln
(
1 + x2

)
− 1/2 + C

2. (Separable Equation Test)
The problem y′ = f(x, y) is said to be separable provided f(x, y) = F (x)G(y) for
some functions F and G.

(a) [75%] Check ( X ) the problems that can be put into separable form, but don’t
supply any details.

y′ = −y(2xy + 1) + (2x+ 3)y2 yy′ = xy2 + 5x2y

y′ = ex+y + ey 3y′ + 5y = 10y2

(b) [25%] State a test which can verify that an equation is not separable. Use the

test to verify that y′ = x+
√
|xy| is not separable.

Answer:
(a) yy′ = xy2 + 5x2y is not separable, but the other three are separable.
(b) Test: fy/f not independent of x implies not separable.

Let f = x+
√
|xy| and assume x > 0. Then y > 0 and f = x+

√
xy. We have fy = 1/y

and fy/f = y/(x+
√
xy) depends on x, so the DE is not separable.



3. (Solve a Separable Equation)

Given y2y′ =
2x2 + 3x

1 + x2

(
125

64
− y3

)
.

(a) Find all equilibrium solutions.
(b) Find the non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly.

Answer:
(a) y = 5/4
(b)

−1

3
ln |125− 64y3| = 2x+

3

2
ln(1 + x2)− 2 arctan(x) + c

4. (Linear Equations)

(a) [60%] Solve 2v′(t) = −32 +
2

3t+ 1
v(t), v(0) = −8. Show all integrating factor

steps.

(b) [30%] Solve 2
√
x+ 2

dy

dx
= y. The answer contains symbol c.

(c) [10%] The problem 2
√
x+ 2 y′ = y − 5 can be solved using the answer yh from

part (b) plus superposition y = yh+yp. Find yp. Hint: If you cannot write the answer
in a few seconds, then return here after finishing all problems on the exam.

Answer:
(a) v(t) = −24t− 8
(b) y(x) = Ce

√
x+2

5. (Stability)
(a) [50%] Draw a phase line diagram for the differential equation

dx/dt = 1000
(
2− 5
√
x
)3

(2 + 3x)(9x2 − 4)8.

Expected in the diagram are equilibrium points and signs of x′ (or flow direction
markers < and >).
(b) [40%] Draw a phase diagram using the phase line diagram of (a). Add these labels
as appropriate: funnel, spout, node, source, sink, stable, unstable. Show at least 8
threaded curves. A direction field is not expected or required.
(c) [10%] Outline how to solve for non-equilibrium solutions, without doing any inte-
grations or long details.

Answer:



(a) and (b) See a handwritten exam solution for a similar problem on midterm 1.
(c) Put the DE into the form y′/G(y) = F (x) and then apply the method of quadrature.

6. (ch3)
(a) Solve for the general solutions:

(a.1) [25%] y′′ + 4y′ + 4y = 0 ,

(a.2) [25%] yvi + 4yiv = 0 ,

(a.3) [25%] Char. eq. r(r − 3)(r3 − 9r)2(r2 + 4)3 = 0 .

(b) Given 6x′′(t) + 7x′(t) + 2x(t) = 0, which represents a damped spring-mass system
with m = 6, c = 7, k = 2, solve the differential equation [15%] and classify the
answer as over-damped, critically damped or under-damped [5%]. Illustrate in a
physical model drawing the meaning of constants m, c, k [5%].

Answer:
(a)
1: r2 + 4r + 4 = 0, y = c1y1 + c2y2, y1 = e−2x, y2 = xe−2x.
2: riv + 4r2 = 0, roots r = 0, 0, 2i,−2i. Then y = c1e

0x + c2xe
0x + c3 cos 2x+ c4 sin 2x.

3: Write as r3(r − 3)3(r + 3)2(r2 + 4)3 = 0. Then y is a linear combination of the
atoms 1, x, x2, e3x, xe3x, x2e3x, e−3x, xe−3x, cos 2x, x cos 2x, x2 cos 2x, sin 2x, x sin 2x,
x2 sin 2x.
Part (b)
Use 6r2 + 7r + 2 = 0 and the quadratic formula to obtain roots r = −1/2,−2/3. Then
x(t) = c1e

−t/2+c2e
−2t/3. This is over-damped. The illustration shows a spring, dampener

and mass with labels k, c, m, x and the equilibrium position of the mass.

7. (ch3)
Determine for yvi + yiv = x + 2x2 + x3 + e−x + x sinx the shortest trial solution
for yp according to the method of undetermined coefficients. Do not evaluate the
undetermined coefficients!

Answer:
The homogeneous solution is a linear combination of the atoms 1, x, x2, x3, cosx, sinx
because the characteristic polynomial has roots 0, 0, 0, 0, i, −i.
1 An initial trial solution y is constructed for atoms 1, x, e3x, e−3x, cosx, sinx giving

y = y1 + y2 + y3 + y4,
y1 = d1 + d2x+ d3x

2 + d4x
3,

y2 = d5 cosx+ d6x cosx,
y3 = d7 sinx+ d8x sinx,
y4 = d9e

−x.



Linear combinations of the listed independent atoms are supposed to reproduce, by spe-
cialization of constants, all derivatives of the right side of the differential equation.
2 The correction rule is applied individually to each of y1, y2, y3, y4.

The result is the shortest trial solution

y = y1 + y2 + y3 + y4,
y1 = d1x

4 + d2x
5 + d3x

6 + d4x
7,

y2 = d5x cosx+ d6x
2 cosx,

y3 = d7x sinx+ d8x
2 sinx,

y4 = d9e
−x.

Some facts:

• The number of terms in each of y1 to y4 is unchanged.

• If an atom of the homogeneous equation appears in a group, then it is removed.
The crossed-out term is replaced by adding another term on the end of that group.

• Suppose a group has base atom A. The number s of crossed-out terms for this
group is exactly the number of atoms of the homogeneous equation having base
atom A.
This number s is the corresponding root multiplicity for base atom A in the charac-
teristic equation. The value s appears in the Edwards-Penney table containing the
mystery factor xs.

8. (ch3)
(a) [50%] Find by undetermined coefficients the steady-state periodic solution for the
equation x′′ + 4x′ + 6x = 10 cos(2t).
(b) [50%] Find by variation of parameters a particular solution yp for the equation
y′′ + 3y′ + 2y = xe2x.

Answer:
(a) Undetermined coefficients for x′′ + 4x′ + 6x = 10 cos(2t).
We solve x′′ + 4x′ + 6x = 0. The characteristic equation roots are −2 ±

√
2i and the

atoms are x1 = e−2t cos
√

2t, x2 = e−2t sin
√

2t.
The trial solution is computed from f = 10 cos 2t. We find all atoms in the derivative
list f, f ′, f ′′ . . . , then take a linear combination to form the trial solution x = d1 cos 2t+
d2 sin 2t. No corrections are needed, because none of these terms are solutions of the
homogeneous equation x′′ + 4x′ + 6x = 0.
Substitute the trial solution to obtain the answers d1 = 5/17, d2 = 20/17. Cramer’s rule
was used to solve for the unknowns d1, d2.
The unique periodic solution xss is extracted from the general solution x = xh + xp by
crossing out all negative exponential terms (terms which limit to zero at infinity). Because
xh(t) contains atoms x1, x2 (see above) containing a negative exponential factor, then



the steady state solution is

xss =
5

17
cos 2t+

20

17
sin 2t.

(b) Variation of parameters for y′′ + 3y′ + 2y = xe2x.
We solve y′′+ 3y′+ 2y = 0. The characteristic equation roots are −2,−1 and the atoms
are y1 = e−2x, y2 = e−x.
Compute the Wronskian W = y1y

′
2 − y′1y2 = e−x. Then for f(x) = xe2x,

yp(x) =

(∫
y2
−f
W

dx

)
y1(x) +

(∫
y1
f

W
dx

)
y2(x).

Substitution of y1, y2, W , f gives

yp(x) =

(∫
e−x
−xe2x

e−3x
dx

)
y1(x) +

(∫
e−2xxe

2x

e−3x
dx

)
y2(x) =

−7e2x

144
+
xe2x

12
.

9. (ch5)
The eigenanalysis method says that the system x′ = Ax has general solution x(t) =
c1v1e

λ1t + c2v2e
λ2t + c3v3e

λ3t. In the solution formula, (λi,vi), i = 1, 2, 3, is an
eigenpair of A. Given

A =

 5 1 1
1 5 1
0 0 7

 ,
then
(a) [75%] Display eigenanalysis details for A.
(b) [25%] Display the solution x(t) of x′(t) = Ax(t).

Answer:
(1): The eigenpairs are4,

 −1
1
0


 ,

6,

 1
1
0


 ,

7,

 1
1
1


 .

An expected detail is the cofactor expansion of det(A−λI) and factoring to find eigenval-
ues 4, 6, 7. Eigenvectors should be found by a sequence of swap, combo, mult operations
on the augmented matrix, followed by taking the partial ∂t1 on invented symbol t1 in the
general solution to compute the eigenvector.
(2): The eigenanalysis method for x′ = Ax implies

x(t) = c1e
4t

 −1
1
0

+ c2e
6t

 1
1
0

+ c3e
7t

 1
1
1

 .



10. (ch5)

(a) [20%] Find the eigenvalues of the matrix A =

 4 1 −1
1 4 −2
0 0 2

.

(b) [40%] Display the general solution of u′ = Au according to Putzer’s spectral
formula. Don’t expand matrix products, in order to save time. However, please
compute all three coefficient functions r1, r2, r3.

(c) [40%] Display the general solution of u′ = Au according to the Cayley-Hamilton
Method. In particular, display the equations that determine the three vectors in the
general solution. To save time, don’t solve for the three vectors.

(d) [40%] Display the general solution of u′ = Au according to the Eigenanalysis
Method. To save time, find one eigenvector explicitly, but don’t solve for the last
two eigenvectors.

(e) [40%] Display the general solution of u′ = Au according to Laplace’s Method.
To save time, use symbols for partial fraction constants and leave the symbols
unevaluated.

Answer:
(a) Eigenvalue Calculation
Subtract λ from the diagonal elements of A to obtain matrix B = A− λI, then expand
det(B) by cofactors to obtain the characteristic polynomial. The roots are the eigenvalues
λ = 2, 3, 5.
(b) Putzer Method for the Exponential Matrix
Let

P =

 2 0 0
1 3 0
0 1 5

 .
Define functions r1, r2, r3 to be the components of the vector solution r(t) of the initial
value problem

r′ = Pr, r(0) =


1
0
0
0

 .
In expanded scalar form the equations are

r′1 = 2r1, r1(0) = 1
r′2 = 3r2 + r1, r2(0) = 0
r′3 = 5r3 + r2, r3(0) = 0.

Solving by the linear integrating factor method

r1 = e2t, r2 = e3t − e2t, r3 =
1

3
e2t − 1

2
e3t +

1

6
e4t.



Define the Putzer projections P1 = I, P2 = A− 2I, P3 = (A− 2I)(A− 3I). Then
eAt = r1(t)P1 + r2(t)P2 + r3(t)P3 and u(t) = eAtu0 implies

u = (r1I + r2(A− 2I) + r3(A− 2I)(A− 3I)) u0

(c) Cayley-Hamilton Method
The eigenvalues 2, 3, 5 from (a) are used to create the list of atoms e2t, e3t, e5t. Then the
Cayley-Hamilton method implies there are constant vectors ~c1, ~c3, ~c3 which depend on
~u(0) and A such that

~u(t) = e2t~c1 + e3t~c2 + e5t~c3.

The determining equations are formed from differentiation of this formula two times, then
replace ~u′ = A~u, ~u′′ = A~u′ = AA~u. Finally, remove t from the three equations by
setting t = 0, and define ~u0 = ~u(0). Then the three equations are

~u0 = ~c1 + ~c2 + ~c3

A~u0 = 2~c1 + 3~c2 + 5~c3

A2~u0 = 4~c1 + 9~c2 + 25~c3

This ends the solution to the problem. We continue, solving for the vectors ~cj, just to
illustrate how it is done. The matrix of coefficients

C =

 1 1 1
2 3 5
4 9 25


and its transpose matrix B = CT give a formal relation

aug(~u0, A~u0, A
2~u0) = aug(~c1,~c2,~c3)B.

Multiplying this relation by B−1 gives

aug(~c1,~c2,~c3) = aug(~u0, A~u0, A
2~u0)B−1.

Then disassembling the formal matrix multiply implies

~c1 = 5~u0 − 8
3
A~u0 + 1

3
A2~u0

~c2 = −5~u0 + 7
2
A~u0 − 1

2
A2~u0

~c3 = 5~u0 − 5
6
A~u0 + 1

6
A2~u0

The matrix of coefficients is
5 −8

3
1
3

−5 7
2
−1

2

1 −5
6

1
6

 =
(
B−1

)T
= C−1!

This fact, that solving for ~c1, ~c1, ~c1 in the displayed equations reduces to inverting the
matrix of coefficients, can be used as a shortcut in the Cayley-Hamilton method. (d)



Eigenanalysis Method
For matrix

A =

 4 1 −1
1 4 −2
0 0 2


the eigenpairs are computed to be2,

 0
1
1


 ,

3,

 −1
1
0


 ,

5,

 1
1
0


 .

Then ~u′ = A~u has general solution

~u(t) = c1e
2t

 0
1
1

+ c2e
3t

 −1
1
0

+ c3e
5t

 1
1
0

 .
(e) Laplace’s Method
The start is the Laplace resolvent formula for matrix differential equation ~u′ = A~u.

(sI − A)L(~u) = ~u0.

This formula expands to s− 4 −1 1
−1 s− 4 2

0 0 s− 2


 L(x)
L(y)
L(z)

 =

 a
b
c


where symbols a, b, c are arbitrary constants for the initial data ~u0. Let W denote the
coefficient matrix. Then the inverse of W can be computed using the adjugate formula
W−1 = adj(W )/ det(W ). The answer for the inverse is

W−1 =
1

(s− 5)(s− 2)(s− 3)

 s2 − 6 s+ 8 s− 2 −s+ 2
s− 2 s2 − 6 s+ 8 −2 s+ 7

0 0 s2 − 8 s+ 15


True, this formula can be derived and then followed by inverse Laplace methods to obtain
an answer in variable t. However, we already know the outcome, because this matrix is
the Laplace of the exponential matrix eAt. The exponential matrix formula was already
derived in (b) above. Expanding the matrix multiplies and collecting terms gives the final
answer

W−1 = L
(
eAt
)

=
1

2
L


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t





Canceling the L with Lerch’s Theorem implies the same answer as found in part (b),
which is

~u(t) = eAt

 a
b
c

 =
1

2


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t


 a
b
c

 .

11. (ch5) Do enough to make 100%

(a) [50%] The eigenvalues are 4, 6 for the matrix A =

[
5 1
1 5

]
.

Display the general solution of u′ = Au. Show details from either the eigenanalysis
method or the Laplace method.

(b) [50%] Using the same matrix A from part (a), display the solution of u′ = Au
according to the Cayley-Hamilton Method. To save time, write out the system to be
solved for the two vectors, and then stop, without solving for the vectors.

(c) [50%] Using the same matrix A from part (a), compute the exponential matrix
eAt by any known method, for example, the formula eAt = Φ(t)Φ−1(0), or Putzer’s
formula.

Answer:
(a) Eigenanalysis method
The eigenpairs of A are (

4,

(
1
−1

))
,

(
6,

(
1
1

))
which implies the eigenanalysis general solution

u(t) = c1e
4t

(
1
−1

)
+ c2e

6t

(
1
1

)
.

(b)Cayley-Hamilton method
Then u(t) = e4t~c1 + e6t~c2 for some constant vectors ~c1, ~c2 that depend on ~u(0) and A.
Differentiate this equation once and use ~u′ = A~u, then set t = 0. The resulting system
is

~u0 = e0~c1 + e0~c2

A~u0 = 4e0~c1 + 6e0~c2

(c) Putzer Method
The result is eAt = e4tI + e4t−e6t

4−6
(A− 4I). Functions r1, r2 are computed from r′1 = 4r1,

r1(0) = 1, r′2 = 6r2 + r1, r2(0) = 0.

eAt =
1

2

 e4 t + e6 t e6 t − e4 t

e6 t − e4 t e4 t + e6 t

 .



12. (ch5) Do both

(a) [50%] Display the solution of u′ =

(
2 0
1 2

)
u, u(0) =

(
0
1

)
, using any method

that applies.

(b) [50%] Display the variation of parameters formula for the system below. Then
integrate to find up(t) for u′ = Au.

u′ =

(
2 0
1 2

)
u +

(
e2t

0

)
.

Answer:
(a) Resolvent method
The resolvent equation (sI − A)L(~u) = ~u(0) is the system(

s− 2 0
−1 s− 2

)(
L(x)
L(y)

)
=

(
0
1

)
.

The system is solved by Cramer’s rule for unknowns L(x), L(y) to obtain

L(x) =
0

(s− 2)2
, L(y) =

s− 2

(s− 2)2
.

The backward Laplace table implies

x(t) = 0, y(t) = e2t.

Best method. Look at the equations as scalar equations x′ = 2x, x(0) = 0 and
y′ = x + 2y, y(0) = 1. Clearly x(t) = 0 and then y′ = 0 + 2y, y(0) = 1 implies
y(t) = e2t.
(b) Putzer Method
Putzer’s exponential formula gives

eAt = e2tI + te2t(A− 2I) =

(
e2t 0
te2t e2t

)
.

Then ~up(t) = eAt
∫ t

0 e
−Au

(
e2u

0

)
du = eAt

∫ t
0

(
1
−u

)
du =

(
te2t

t2e2t/2

)
.

13. (ch6)
(a) Define asymptotically stable equilibrium for u′ = f(u), a 2-dimensional system.
(b) Give examples of 2-dimensional systems of type saddle, spiral, center and node.



(c) Give a 2-dimensional predator-prey example u′ = f(u) and explain the meaning
of the variables in the model.

Answer:
(a) Definition
An equilibrium point ~u = ~u0 is asymptotically stable at t = ∞ provided it is stable
and in addition lim ~u(t) = ~u0 for all solutions ~u(t) with ‖~u(0)− ~u0‖ sufficiently small.
An equilibrium point ~u = ~u0 is stable at t =∞ provided for each ε > 0 there corresponds
a number δ > 0, depending on ε, such that ‖~u(0) − ~u0‖ < δ implies ~u(t) exists for
0 ≤ t <∞ and for all such t-values ‖~u(t)− ~u0‖ < ε.
(b) Examples
The roots are considered for each type, to give the correct geometric picture. For instance,
the example x = et, y = e−t traces out one branch of a saddle. Here’s the answers:

A1 =

(
1 0
0 −1

)
saddle roots = 1, −1

A2 =

(
1 0
0 1

)
node roots = 1, 1

A3 =

(
0 1
−1 0

)
center roots = i, −i

A4 =

(
−1 1
−1 1

)
spiral roots = −1 + i, −1− i

(c) Predator-Prey
An example is

x′ = (1− x− y)x,
y′ = (2− y + x)y.

Then x is the prey and y is the predator. Without the interaction terms, each population
would change according to a logistic equation, with carrying capacities of 1 and 2, respec-
tively, for x and y. There are four equilibria, three of which are extinction states and one
that represents the ideal population sizes, about which the real populations oscillate.

14. (ch6)
Find the equilibrium points of x′ = 14x−x2/2−xy, y′ = 16y−y2/2−xy and classify
the linearizations as node, spiral, center, saddle. What classifications can be deduced
for the nonlinear system?

Answer:
The equilibria are constant solutions, which are found from the equations

0 = (14− x/2− y)x
0 = (16− y/2− x)y



Considering when a zero factor can occur leads to the four equilibria (0, 0), (0, 32), (28, 0),
(12, 8). The last equilibrium comes from solving the system of equations

x/2 + y = 14
x+ y/2 = 16

Linearization
The Jacobian matrix J is the augmented matrix of partial derivatives ∂x~F, ∂y~F (column
vectors) computed from

~f(x, y) =

(
14x− x2/2− yx
16y − y2/2− xy

)
.

Then

J(x, y) =

(
14− x− y −x

−y 16− y − x

)
.

The four matrices below are J(x, y) when (x, y) is replaced by an equilibrium point.
Included in the table are the roots of the characteristic equation for each matrix and its
classification based on the roots. No book was consulted for the classifications. The idea
in each is to examine the limits at t = ±∞, then eliminate classifications. No matrix has
complex eigenvalues, and that eliminates the center and spiral. The first three are stable
at either t = infty or t = infty, which eliminates the saddle and leaves the node as the
only possible classification.

A1 = J(0, 0) =

(
14 0
0 16

)
r = 14, 16 node

A2 = J(0, 32) =

(
−18 0
−32 −16

)
r = −18,−16 node

A3 = J(28, 0) =

(
−14 −28

0 −12

)
r = −14,−12 node

A4 = J(12, 8) =

(
−6 −12
−8 −4

)
r = −5 +

√
97,−5−

√
97 saddle

Some maple code for checking the answers:

F:=unapply([14*x-x^2/2-y*x , 16*y-y^2/2 -x*y],(x,y));

Fx:=unapply(map(u->diff(u,x),F(x,y)),(x,y));

Fy:=unapply(map(u->diff(u,y),F(x,y)),(x,y));

Fx(0,0);Fy(0,0);Fx(28,0);Fy(28,0);Fx(0,32);Fy(0,32);Fx(0,32);Fy(0,32);

15. (ch6) Do enough to make 100%
(a) [25%] Which of the four types center, spiral, node, saddle can be unstable at
t =∞? Explain your answer.
(b) [25%] Give an example of a linear 2-dimensional system u′ = Au with a saddle



at equilibrium point x = y = 0, and A is not triangular.
(c) [25%] Give an example of a nonlinear 2-dimensional predator-prey system with
exactly four equilibria.

(d) [25%] Display a formula for the general solution of the equation u′ =

(
1 1
−1 1

)
u.

Then explain why the system has a spiral at (0, 0).

(e) [25%] Is the origin an isolated equilibrium point of the u′ =

(
1 1
1 1

)
u? Explain

your answer.

Answer:
(a) All except the center, which is stable but not asymptotically stable. All the others
correspond to a general solution which can have an exponential factor ekt in each term.
If k > 0, then the solution cannot approach the origin at t =∞.

(b) Required are characteristic roots like 1, −1. Let B =

(
−1 0

0 1

)
. Define A =

PBP−1 where P =

(
1 1
1 2

)
. Then u′ = Au has a saddle at the origin, because the

characteristic roots of A are still 1, −1. And A =

(
−3 2
−4 3

)
is not triangular.

(c) Example: The nonlinear predator-prey system x′ = (x+y−4)x, y′ = (−x+2y−2)y
has exactly four equilibrium points (0, 0), (4, 0), (0, 1), (2, 2).
(d) The characteristic equation det(A− λI) = 0 is (1− λ)2 + 1 = 0 with complex roots
1±i and corresponding atoms et cos t, et sin t. Then the Cayley-Hamilton Method implies

~u(t) = et cos t~c1 + et sin t~c2.

Explanation, why the classification is a spiral. Such solutions containing sine and
cosine factors wrap around the origin. This makes it a spiral or a center. Because of the
exponential factor et, it is asymptotically stable at t = −∞, which disallows a center, so
it is a spiral.
(e) No, because det(A) = 0. In this case, Au = 0 has infinitely many solutions, describing
a line of equilibria through the origin. This implies the equilibrium point (0, 0) is not
isolated [you cannot draw a circle about (0, 0) which contains no other equilibrium point].

16. (ch7)
(a) Define the direct Laplace Transform.
(b) Define Heaviside’s unit step function.
(c) Derive a Laplace integral formula for Heaviside’s unit step function.
(d) Explain Laplace’s Method, as applied to the differential equation x′(t)+2x(t) = et,
x(0) = 1.

Answer:



(a) Definition of Direct Laplace Transform

L(f(t)) =
∫ ∞

0
f(t)e−stdt.

(b) Definition of the Heaviside unit step

u(t− a) =

{
1 t ≥ a,
0 t < a.

(c) Derivation
We prove the second shifting theorem L(u(t−a)f(t−a)) = e−asL(f(t)), which includes
an integral formula for the Heaviside function.

L(u(t− a)f(t− a)) =
∫∞

0 u(t− a)f(t− a)e−stdt
=

∫ a
0 (integrand)dt+

∫∞
a (integrand)dt

= 0 +
∫∞
a f(t− a)e−stdt

=
∫∞

0 f(u)e−s(a+u)du
= e−sa

∫∞
0 f(u)e−sudu

= e−asL(f(t))

Used in the derivation is a change of variable u = t−a, du = dt. Line 3 uses u(t−a) = 0
on the interval 0 ≤ t ≤ a and u(t−a) = 1 on a ≤ t <∞, which simplifies each integrand.
Line 5 observes that factor e−sa in the integrand is a constant relative to u-integration,
therefore it can move through the integral sign.
(d) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to write, after a division, the isolated formula for L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

17. (ch7)

(a) Solve L(f(t)) =
100

(s2 + 1)(s2 + 4)
for f(t).

(b) Solve for f(t) in the equation L(f(t)) =
1

s2(s− 3)
.



(c) Find L(f) given f(t) = (−t)e2t sin(3t).
(d) Find L(f) where f(t) is the periodic function of period 2 equal to t/2 on 0 ≤ t ≤ 2
(sawtooth wave).

Answer:
(a) L(f) = 100

(u+1)(u+4)
= 100/3

u+1
+ −100/3

u+4
where u = s2. Then L(f) = 100

3
( 1
s2+1
− 1

s2+4
) =

100
3
L(sin t− 1

2
sin 2t) implies f(t) = 100

3
(sin t− 1

2
sin 2t).

(b) L(f) = a
s

+ b
s2

+ c
s−3

= L(a+ bt+ ce3t) implies f(t) = a+ bt+ ce3t. The constants,
by Heaviside coverup, are a = −1/9, b = −1/3, c = 1/9.
(c) L(f) = d

ds
L(e2t sin 3t) by the s-differentiation theorem. The first shifting theo-

rem implies L(e2t sin 3t) = L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d
ds

(
1

(s−2)2+9

)
= −2(s−2)

((s−2)2+9)2
.

18. (ch7)
(a) Solve y′′ + 4y′ + 4y = t2, y(0) = y′(0) = 0 by Laplace’s Method.
(b) Solve x′′′ + x′′ − 6x′ = 0, x(0) = x′(0) = 0, x′′(0) = 1 by Laplace’s Method.
(c) Solve the system x′ = x + y, y′ = x − y + et, x(0) = 0, y(0) = 0 by Laplace’s
Method.

Answer:
(a) Transform to get L(x) = L(t2)

s2+4s+4
. Then L(x) = 1

s3(s+2)2
= a

s
+ b
s2

+ c
s3

+ d
s+2

+ f
(s+2)2

=

L(a+ bt+ ct2 + de−2t + fte−2t). The answer is x(t) = a+ bt+ +ct2 + de−2t + fte−2t.
The partial fraction constants are a = 3/16, b = −1/4, c = 1/4, d = −3/16, f = −1/8.
(b) Transform to get L(x) = 1

s3+s2−6s
= 1

s(s−2)(s+3)
= a

s
+ b

s−2
+ c

s+3
= L(a+be2t+ce−3t).

Then the answer is x(t) = a + be2t + ce−3t. The partial fraction constants are a =
−1/6, b = 1/10, c = 1/15.

19. (ch7)
(a) [25%] Solve by Laplace’s method x′′ + x = cos t, x(0) = x′(0) = 0.

(b) [10%] Does there exist f(t) of exponential order such that L(f(t)) =
s

s+ 1
?

Details required.

(c) [15%] Linearity L(c1f + c2g) = c1L(f) + c2L(g) is one Laplace rule. State four
other Laplace rules. Forward and backward table entries are not rules, which means
L(1) = 1/s doesn’t count.

(d) [25%] Solve by Laplace’s resolvent method

x′(t) = x(t) + y(t),
y′(t) = 2x(t),

with initial conditions x(0) = −1, y(0) = 2.



(e) [25%] Derive y(t) =
∫ t

0
sin(t− u)f(u)du by Laplace transform methods from the

forced oscillator problem

y′′(t) + y(t) = f(t), y(0) = y′(0) = 0.

Answer:
(a) Transform to obtain L(x) = s

(s2+1)2
.

Calculus method. Observe that d
ds

1
s2+1

= −2s
(s2+1)2

. Then L(x) = −1
2
d
ds

1
s2+1

=

−1
2
d
ds
L(sin t) = −1

2
L((−t) sin t) by the s-differentiation theorem. Finally, x(t) = 1

2
t sin t.

Convolution method. Write L(x) = L(sin t)L(cos t). Apply the convolution the-
orem to obtain x(t) =

∫ t
0 sinu cos(t − u)du = 1

2
t sin t. A maple answer check is

int(sin(u)*cos(t-u),u=0..t); .
Hand integration uses the trigonometric identity 2 sin(a) cos(b) = cos(a−b)−cos(a+b).
(b) No. The limit of the Laplace transform of a function of exponential order is zero as
s→∞.
(c) The possible rules: Linearity, Lerch’s cancelation law, parts formula, s-differentiation,
first shift theorem, second shift theorem, periodic function formula, convolution theorem,
delta function formula, integral theorem.
(d) The resolvent formula (sI − A)L(~u) = ~u0 becomes the 2× system of equations(

s− 1 −1
−2 s− 0

)(
L(x)
L(y)

)
=

(
−1

2

)
.

Multiply by the inverse matrix of (sI − A) on the left to obtain(
L(x)
L(y)

)
=

(
s− 1 −1
−2 s− 0

)−1 ( −1
2

)
=

1

∆

(
s− 0 1

2 s− 1

)(
−1

2

)
,

where ∆ = det(sI − A) = (s + 1)(s − 2). Then L(x) = 2−s
∆

= −1
s+1

, L(y) = 2s
∆

=
2s−4

(s+1)(s−2)
= 2

s+1
. Then x(t) = −e−t, y(t) = 2e−t.

(e) Derive y(t) =
∫ t

0
sin(t− u)f(u)du

Transform y′′ + y = f to get the transfer function relation

L(y(t)) =
1

s2 + 1
L(f(t)) = L(sin t)L(f(t)).

The convolution theorem implies the right side of the equation is L(
∫ t

0 sin(t−u)f(u)ud).
Lerch’s cancelation law implies y(t) =

∫ t
0 sin(t− u)f(u)du.

20. (ch7)

(a) [25%] Solve L(f(t)) =
10

(s2 + 8)(s2 + 4)
for f(t).



(b) [25%] Solve for f(t) in the equation L(f(t)) =
s+ 1

s2(s+ 2)
.

(c) [20%] Solve for f(t) in the equation L(f(t)) =
s− 1

s2 + 2s+ 5
.

(d) [10%] Solve for f(t) in the relation

L(f) =
d

ds
L(t2 sin 3t)

(e) [10%] Solve for f(t) in the relation

L(f) =
(
L
(
t3e9t cos 8t

))∣∣∣
s→s+3

.

Answer:
(a) L(f(t)) = 10

u+8
u+ 4 where u = s2. Use Heaviside’s coverup method to find the

partial fraction expansion

10

u+ 8
u+ 4 =

−5/2

u+ 8
+

5/2

u+ 4
=
−5/2

s2 + 8
+

5/2

s2 + 4
.

Then L(f(t)) = L
(
−5

2
sin
√

8t√
8

+ 5
2

sin 2t
2

)
implies by Lerch’s theorem

f(t) = −5

2

sin
√

8t√
8

+
5

2

sin 2t

2
.

(b) Expand the fraction into partial fractions as follows:

L(f) =
s+ 1

s2(s+ 2)
=
a

s
+

b

s2
+

c

s+ 2
= L(a+ bt+ ce−2t).

Then Lerch’s theorem implies f(t) = a + bt + ce−2t. The partial fraction constants are
a = 1/4, b = 1/2, c = −1/4.
(d) Because d

ds
L(g(t)) = L((−t)g(t)), then L(f) = L((−t)t2 sin 3t). Lerch’s theorem

implies f(t) = −t3 sin 3t.
(e) The shifting theorem L(g(t))|s→(s−a) = L(eatg(t)) is applied to remove the shift on

the outside and put e−3t into the Laplace integrand. Then L(f(t)) = L(e−3tt3e9t cos 8t).
Lerch’s theorem implies f(t) = t3e6t cos 8t.


