Chapter 3

First order numerical
methods

3.1 Solving y' = F'(x) Numerically

Studied here is the creation of tables and graphs for the solution of the
initial value problem

(1) y' = F(z), y(xo)=yo

To illustrate the kinds of tables and graphs to be created, consider the
initial value problem 3 = 32% — 1, (0) = 2. Quadrature gives y(z) =
23 — x + 2. In Figure 1, evaluation of y(x) from = 0 to x = 1 in
increments of 0.1 gives the xy-table, whose entries represent the dots

for the connect-the-dots graphic.

r | y
a
0.0 | 2.000 Y Yy
0.6 | 1.616
01 1.901
0.7 | 1.643
0.2 | 1.808
08 | 1.712
03 [ L.727
0.9 | 1.829
0.4 ] 1.664 R
05 [ 1.625 T

Figure 1. A table of zy-values for y = 3 — z 4+ 2. The graphic
represents the table’s rows as dots, which are joined to make the
connect-the-dots graphic.

The interesting case is when quadrature in (1) encounters an integral
f;o F(t)dt that cannot be evaluated to provide an explicit equation for
y(x). Nevertheless, y(z) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular,
trapedoidal and Simpson; see page 125 for a review of the three rules. The
ideas lead to the numerical methods of Euler, Heun and Runge-Kutta,
which appear later in this chapter.
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How to make an xy-table. Given y = F(z), y(zo) = vo, an
equi-spaced table of zy-values is created as follows. The z-values are a
distance h > 0 apart. Each z, y pair in the table represents a dot in the
connect-the-dots graphic of the explicit solution

v@) =0+ [ Py

First table entry. The initial condition y(zy) = yo identifies two con-
stants xg, yo to be used for the first table entry. For example, y(0) = 2
identifies X =0, Y = 2.

Second table entry. The second table pair X, Y is computed from
the first table pair zg, yo and a recurrence. The X-value is given by
X = zg + h, while the Y-value is given by the numerical integration
method being used, in accordance with Table 1 (the table is justified on
page 128).

Table 1. Three numerical integration methods.

Rectangular Rule Y = yg + hF(zo)
h
Trapezoidal Rule Y =y + E(F(ZL'Q) + F(xo+ h))

Simpson’s Rule Y =yo + g(F({L'()) +4F (xg + h/2) + F(xzo + h)))

Third and higher table entries. They are computed by letting xg,
1o be the current table entry, then the next table entry X, Y is found
exactly as outlined above for the second table entry.

It is expected, and normal, to compute the table entries using computer
assist. In simple cases, a calculator will suffice. If F' is complicated or
Simpson’s rule is used, then a computer algebra system or a numerical
laboratory is recommended. See Example 2, page 122.

How to make a connect-the-dots graphic. To illustrate, con-
sider the xy-pairs below, which are to represent the dots in the connect-
the-dots graphic.

(0.0,2.000), (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664),

(0.5,1.625), (0.6,1.616), (0.7,1.643), (0.8,1.712), (0.9, 1.829),
(1.0, 2.000).
Hand drawing. The method, unchanged from high school mathematics

courses, is to plot the points as dots on an xy-coordinate system, then
connect the dots with line segments. See Figure 2.
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Figure 2. A computer-generated graphic made to
z simulate a hand-drawn connect-the-dots graphic.

Computer algebra system graphic. The computer algebra system
maple has a primitive syntax especially made for connect-the-dots graph-
ics. Below, L is a list of zy-pairs.

# Maple V.1

Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],
[0.3, 1.727], [0.4, 1.664], [0.5, 1.625],
(0.6, 1.616], [0.7, 1.643], [0.8, 1.712],
(0.9, 1.829], [1.0, 2.000]:

plot([Dots]);

The plotting of points only can be accomplished by adding options into
the plot command: type=point and symbol=circle will suffice.

Numerical laboratory graphic. The computer programs matlab,
octave and scilab provide primitive plotting facilities, as follows.

x=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]
Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625,

1.616, 1.643, 1.712, 1.829, 2.000]
plot(X,Y)

1 Example (Rectangular Rule) Consider v/ = 322 — 2z, y(0) = 0. Apply
the rectangular rule to make an xy-table for y(x) from z = 0 to x = 2 in
steps of h = 0.2. Graph the approximate solution and the exact solution
y(z) =23 — 2?2 for 0 <z < 2.

Solution: The exact solution y = 23 — 22 is verified directly, by differentiation.

It was obtained by quadrature applied to 3’ = 322 — 2, y(0) = 0.

The first table entry 0, 0 is used to obtain the second table entry X = 0.2,
Y =0 as follows.

z0=0,90=0 The current table entry, row 1.
X=x9+h The next table entry, row 2.
=0.2, Use xg =0, h = 0.2.
Y =yo+ hF(x0) Rectangular rule.
=0+ 0.2(0). Use h = 0.2, F(z) = 322 — 2z.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:
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Table 2. Rectangular rule solution and exact values for y’ = 322 — 2z,
y(0) =0 on 0 <z < 2, step size h =0.2.

T y-rect  y-exact T y-rect y-exact
0.0 0.000 0.000 1.2 0.120 0.288
0.2 0.000 —0.032 1.4 0.504 0.784
04 —-0.056 —0.096 1.6 1.120 1.536
0.6 —-0.120 —-0.144 1.8  2.016 2.592
0.8 —0.144 —-0.128 2.0 3.240 4.000

1.0 —-0.080 0.000

The zy-values from the table are used to obtain the comparison plot in
Figure 3.

. Exact

Approximate Figure 3. Comparison plot of the

rectangular rule solution and the
exact solution y = 23 — 22 for
y' = 322 — 2z, y(0) = 0.

Example (Trapezoidal Rule) Consider y' = cosz + 2z, y(0) = 0. Apply
both the rectangular and trapezoidal rules to make an zy-table for y(x) from
x =0tox = in steps of h = 7/10. Compare the two approximations in
a graphic for 0 <z < 7.

Solution: The exact solution y = sinx + 22 is verified directly, by differentia-
tion. It will be seen that the trapezoidal solution is nearly identical, graphically,
to the exact solution.

The table will have 11 rows. The three columns are x, y-rectangular and y-
trapezoidal. The first table entry 0, 0, 0 is used to obtain the second table entry
0.17, 0.31415927, 0.40516728 as follows.

Rectangular rule second entry.

Y =yo+ hF(x0) Rectangular rule.
= 0+ h(cos0+ 2(0)) Use F(z) = cosx + 2z, 29 = yo = 0.
= 0.31415927. Use h = 0.1 = 0.31415927.

Trapezoidal rule second entry.
Y =yo + 0.5h(F (z9) + F(zo + h))  Trapezoidal rule.
=0+ 0.057(cos0 + cos h + 2h) Use 29 = yo = 0, F(z) = cosx + 2.
= 0.40516728. Use h =0.17.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:
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Table 3. Rectangular and trapezoidal solutions for 3’ = cosz + 2z,
y(0) =0 on 0 <z <, step size h = 0.17.

T y-rect y-trap T y-rect y-trap
0.000000  0.000000  0.000000 1.884956  4.109723  4.496279
0.314159 0.314159 0.405167 2.199115 5.196995 5.638458
0.628319 0.810335 0.977727 2.513274  6.394081 6.899490
0.942478  1.459279  1.690617 2.827433 7.719058 8.300851
1.256637 2.236113  2.522358 3.141593  9.196803  9.869604
1.570796  3.122762 3.459163

Y
Figure 4. Comparison plot on 0 <z <7
of the rectangular (solid) and
trapezoidal (dotted) solutions for
x y = cosz + 2z, y(0) =0 for h =0.17.

Computer algebra system. The maple implementation for Example
2 appears below. Part of the interface is repetitive execution of a group,
which is used here to avoid loop constructs. The code produces lists
Dots1 and Dots2 which contain Rectangular (left panel) and Trapezoidal
(right panel) approximations.

# Rectangular algorithm

# Group 1, initialize.
F:=x->evalf (cos(x) + 2*x):
x0:=0:y0:=0:h:=0.1%Pi:
Dots1:=[x0,y0]:

# Group 2, repeat 10 times
Y:=y0+h*F (x0) :
x0:=x0+h:y0:=evalf (Y):
Dots1:=Dotsl, [x0,y0];

# Group 3, plot.
plot ([Dots1]);

# Trapezoidal algorithm

# Group 1, initialize.
F:=x->evalf (cos(x) + 2*x):
x0:=0:y0:=0:h:=0.1%Pi:
Dots2:=[x0,y0]:

# Group 2, repeat 10 times
Y :=yO0+h* (F (x0) +F (x0+h)) /2:
x0:=x0+h:y0:=evalf (Y):
Dots2:=Dots2, [x0,y0];

# Group 3, plot.
plot ([Dots2]);

Example (Simpson’s Rule) Consider 3/ = e~ y(0) = 0. Apply both
the rectangular and Simpson rules to make an xy-table for y(x) from x = 0
to x = 1 in steps of h = 0.1. In the table, include values for the exact
solution y(x) = 4erf(ac).
for 0.8 <z < 1.0.

Compare the two approximations in a graphic

Solution: The error function erf(z) = % IN e~ dt is a library function
available in maple, mathematica, matlab and other computing platforms. It is
known that the integral cannot be expressed in terms of elementary functions.
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The xy-table. There will be 11 rows, for x = 0 to z = 1 in steps of A = 0.1.
There are four columns: z, y-rectangular, y-Simpson, y-exact.

The first row arises from y(0) = 0, giving the four entries 0, 0, 0, 0. It will
be shown how to obtain the second row by calculator methods, for the two
algorithms rectangular and Simpson.

Rectangular rule second entry.

Y1l= Yo + hF(xo)
=0+ h(e?)
=0.1.

Rectangular rule.
Use F(z) = e, 2o = yo = 0.
Use h =0.1.

Simpson rule second entry.

Y2=yo+ %(F(xo) +4F(x1) + F(x2)) Simpson rule, 1 = zg + h/2,

T2 = X + h
=0+ L2( +4el/? +et) Use F(z) = e, 2o = yo = 0.
= 0.09966770540. Use h =0.1.

Exact solution second entry.

The numerical work requires the tabulated function erf(xz). The maple details:
x0:=0:y0:=0:h:=0.1:
c:=sqrt(Pi)/2
Exact:=x->yO+c*erf (x):
Y3:=Exact (x0+h) ;

# Y3 := .09966766428

Given.

Conversion factor.

Exact solution y = yo + [ e dt.
Calculate exact answer.

Table 4. Rectangular and Simpson solutions for y = 6_12, y(0) =0
on 0 <z <m, step size h = 0.1.

x y-rect y-Simp y-exact
0.0 0.00000000 0.00000000 0.00000000
0.1 0.10000000 0.09966771 0.09966766
0.2 0.19900498 0.19736511 0.19736503
0.3 0.29508393 0.29123799 0.29123788
0.4 0.38647705 0.37965297 0.37965284
0.5 0.47169142 0.46128114 0.46128101
0.6 0.54957150 0.53515366 0.53515353
0.7 0.61933914 0.60068579 0.60068567
0.8 0.68060178 0.65766996 0.65766986
0.9 0.73333102 0.70624159 0.70624152
1.0 0.77781682 0.74682418 0.74682413
Y

0.8

Rect,

Figure 5. Comparison plot
on 0.8 <z < 1.0 of the
rectangular (dotted) and
0.64 r Simpson (solid) solutions for
0.8 1 y =e ", y(0) =0 for h=0.1.
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Computer algebra system. The maple implementation for Example 3 ap-
pears below. Part of the interface is repetitive execution of a group, which
avoids loop constructs. The code produces two lists Dots1 and Dots2 which
contain Rectangular (left panel) and Simpson (right panel) approximations.

# Rectangular algorithm # Simpson algorithm

# Group 1, initialize. # Group 1, initialize.

F:=x->evalf (exp(-x*x)): F:=x->evalf (exp(-x*x)):

x0:=0:y0:=0:h:=0.1: x0:=0:y0:=0:h:=0.1:

Dots1:=[x0,y0]: Dots2:=[x0,y0]:

# Group 2, repeat 10 times # Group 2, repeat 10 times

Y:=evalf (yO+h*F (x0)): Y:=evalf (yO+h* (F(x0)+

x0:=x0+h:y0:=Y: 4%F (x0+h/2)+F (x0+h)) /6) :

Dots1:=Dotsl, [x0,y0]; x0:=x0+h:y0:=Y:
Dots2:=Dots2, [x0,y0];

# Group 3, plot. # Group 3, plot.

plot ([Dots1]); plot ([Dots2]);

Review of Numerical Integration

Reproduced here are calculus topics: the rectangular rule, the trape-
zoidal rule and Simpson’s rule for the numerical approximation of
an integral ff F(x)dx. The approximations are valid for b — a small.
Larger intervals must be subdivided, then the rule applies to the small
subdivisions.

Rectangular Rule. The approximation uses Euler’s ,y F
idea of replacing the integrand by a constant. The value
of the integral is approximately the area of a rectangle T
of width b — a and height F'(a). a b

b
2) / F(a)dz ~ (b— a)F(a).

Trapezoidal Rule. The rule replaces the integrand
F(x) by alinear function L(z) which connects the planar
points (a, F(a)), (b, F(b)). The value of the integral is
approximately the area under the curve L, which is the
area of a trapezoid.

b —a
3) / Fa)de ~ 2 (Fla) + F(5).
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Simpson’s Rule. The rule replaces the integrand
F(z) by a quadratic polynomial Q(x) which connects
the planar points (a, F(a)), ((a + b)/2,F((a + )/2)),
(b, F(b)). The value of the integral is approximately the
area under the quadratic curve Q.

(4) /:F(w)dx ~ bg“ (F(a) +4F (“;b> +F(b)) .

Simpson’s Polynomial Rule. If Q(z) is a linear, quadratic or cu-
bic polynomial, then (proof on page 126)

6 [ ewdr="2" (o +10(“20) o).

Integrals of linear, quadratic and cubic polynomials can be evaluated
exactly using Simpson’s polynomial rule (5); see Example 4, page 126.

Remarks on Simpson’s Rule. The right side of (4) is exactly the
integral of Q(x), which is evaluated by equation (5). The appearance
of F' instead of @) on the right in equation (4) is due to the relations
Q(a) = F(a), Q((a +1b)/2) = F((a+b)/2), Q(b) = F(b), which arise
from the requirement that () connect three points along curve F'.

The quadratic interpolation polynomial Q(x) is determined uniquely
from the three data points; see Quadratic Interpolant, page 127, for
a formula for ) and a derivation. It is interesting that Simpson’s rule
depends only upon the uniqueness and not upon the actual formula for

Q!

4 Example (Polynomial Quadrature) Apply Simpson's polynomial rule (5)
to verify flz(:ng — 1622 + 4)dx = —355/12.

Solution: The application proceeds as follows:

I = ff Q(z)dz Evaluate integral I using Q(z) =
3 — 1622 + 4.
2—-1
=5 (Q(1) +4Q(3/2) + Q(2)) Apply Simpson'’s polynomial rule (5).
1
=3 (=11 4 4(—229/8) — 52) Use Q(z) = 2% — 1622 4 4.
= _%_ Equality verified.

Simpson’s Polynomial Rule Proof. Let Q(z) be a linear, quadratic or cubic
polynomial. It will be verified that

) [ e ="5" (aw+1a(*5") +em).
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If the formula holds for polynomial @) and c is a constant, then the formula also
holds for the polynomial c@). Similarly, if the formula holds for polynomials Q1
and @2, then it also holds for Q1 + Q2. Consequently, it suffices to show that
the formula is true for the special polynomials 1, 2, z? and x3, because then it
holds for all combinations Q(z) = co + c17 + c22? + c32®.

Only the special case Q(z) = x® will be treated here. The other cases are left
to the exercises. The details:

b— b
RHS = " (Q(a) +4Q <“‘; > + Q(b)) Evaluate the right side of
equation (6).

b—a /5 1 3 3 . 3
=5 | + 5(@ +b)°+0b Substitute Q(z) = z°.
_b-a(3 3, .2 2 13 3 Smpli
=% 5 (a® + a*b+ ab® + b°) Expand (a + b)3. Simplify.

1
=1 (b4 — a4), Multiply and simplify.

LHS = [* Q(x)dx Evaluate the left hand side
(LHS) of equation (6).
= :a:?’da: Substitute Q(x) = 23.

1
=1 (b4 — a4) Evaluate.
= RHS. Compare with the RHS.

This completes the proof of Simpson’s polynomial rule.

Quadratic Interpolant (). Given a < b and the three data points
(a,Yp), ((a+b)/2,Y1)), (b,Y2)), then there is a unique quadratic curve
Q(X) which connects the points, given by

QUX) = Yo+ (471 — Y — 3¥9) %
(7) (X _ a)2
+ (2Y2 + 2Y, — 4Y1)W.

Proof: The term quadratic is meant loosely: it can be a constant or linear
function as well.

Uniqueness of the interpolant @ is established by subtracting two candidates to
obtain a polynomial P of degree at most two which vanishes at three distinct
points. By Rolle’s theorem, P’ vanishes at two distinct points and hence P”
vanishes at one point. Writing P(X) = ¢+ ¢1 X + 2 X? shows ¢ = 0 and then
c1 = cg =0, or briefly, P = 0. Hence the two candidates are identical.

It remains to verify the given formula (7). The details are presented as two
lemmas.! The first lemma contains the essential ideas. The second simply
translates the variables.

"What’s a lemma? It’s a helper theorem, used to dissect long proofs into short
pieces.
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Lemma 1 Given y; and ys, define A = yo —y1, B = 2y1 —y2. Then the quadratic
y = z(Az + B) fits the data items (0,0), (1,41), (2, 2y2).

Lemma 2 Given Y, Y1 and Y2, define y; = Y1 —Yp, yo = 2(Y2—Y0), A = yo—y1,
B =2y —y2and x =2(X —a)/(b—a). Then quadratic Y(X) = Yo +z(Az+ B)
fits the data items (a,Yp), ((a +0)/2,Y7), (b, Y2).

To verify the first lemma, the formula y = 2(Ax + B) is tested to go through
the given data points (0,0), (1,y1) and (2,2ys). For example, the last pair is
tested by the steps

y(2) =2(24 + B) Apply y = z(Az + B) with z = 2.
:4y2—4y1+4y1—2y2 USEA:yQ—yl andB:2y1—y2.
= 2ys. Therefore, the quadratic fits data item
(2, 21]2)

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the
first lemma, Y = Yy + y. The data fit is checked as follows:

Y(b) = Yo+ y(2) Apply formulas Y(X) =Yy + y(z), y(z) =
x(Ax + B) with X =b and z = 2.
=Yo + 2y Apply data fit y(2) = 2ys.
=Y. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes
the proof of the two lemmas. The formula for @ is obtained from the second
lemma as Q = Yy + Bx + Ax? with substitutions for A, B and x performed to
obtain the given equation for @) in terms of Yy, Y7, Y5, a, b and X.

Justification of Table 1: The method of quadrature applied to vy = F(x),
y(xo) = yo gives an explicit solution y(x) involving the integral of F'. Specialize
this solution formula to x = ¢ + h where h > 0. Then

xo+h
y(zo+h) =yo + / F(t)dt.

Zo

All three methods in Table 1 are derived by replacment of the integral above
by the corresponding approximation taken from the rectangular, trapezoidal or
Simpson method on page 125. For example, the trapezoidal method gives

zo+h h
/ F(t)dt ~ B (F(zo) + F(zo + h)),

0

whereupon replacement into the formula for y gives the entry in Table 1 as

h
Yzy(IOJrh)“yo+§(F($o)+F(Io+h))-

This completes the justification of Table 1.
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Exercises 3.1

Simpson’s Rule. The following ex-
ercises use formulas and techniques
found in the proof on page 126 and in
Example 4, page 126.

19. Verify with Simpson’s rule (5)
for cubic polynomials the equality
JE (a3 + 1622 + 4)da = 541/12.

20. Verify with Simpson’s rule (5)
for cubic polynomials the equality
203 _
Ji (@® 4+ 2+ 14)de = 77/4.

21. Let f(x) satisfy f(0) = 1,
f(1/2) = 6/5, f(1) = 3/4. Ap-
ply Simpson’s rule with one divi-
sion to verify that fol f(x)dx =~
131,/120.

22. Let f(z) satisfty f(0) = -1,
f(1/2) =1, f(1) = 2. Apply
Simpson’s rule with one division
to verify that fol f(x)dz =~ 5/6.

23. Verify Simpson’s equality (5), as-
suming Q(x) =1 and Q(z) = x.

24. Verify Simpson’s equality (5), as-

suming Q(z) = 2.

Quadratic Interpolation. The fol-
lowing exercises use formulas and tech-
niques from the proof on page 127.

25. Verify directly that the quadratic
polynomial y = (7 — 4x) goes
through the points (0,0), (1,3),
(2,-2).

26. Verify directly that the quadratic
polynomial y = (8 — 5x) goes
through the points (0,0), (1,3),
(2,—4).

27. Compute the quadratic interpo-
lation polynomial Q(z) which
goes through the points (0,1),
(0.5,1.2), (1,0.75).

28. Compute the quadratic interpo-
lation polynomial Q(z) which
goes through the points (0,—1),
(0.5,1), (1,2).

29. Verify the remaining cases in
Lemma 1, page 128.

30. Verify the remaining cases in
Lemma 2, page 128.
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3.2 Solving v’ = f(x,y) Numerically

The numerical solution of the initial value problem

(1) y'(z) = f(z,y(x), y(zo) =wo

is studied here by three basic methods. In each case, the current table
entry xg, yo plus step size h is used to find the next table entry X,
Y. Define X = zo + h and let Y be defined below, according to the
algorithm selected (Euler, Heun, RK4)2. The motivation for the three
methods appears on page 135.

Euler’s method.
(2) Y =yo+ hf(zo,yo).

Heun’s method.

Y1 =yo + hf(ﬂj(),y(]),

Y =y + o (7o, 0) + Flao + o).

3)

Runge-Kutta RK4 method.

k1 = hf(xo,v0)

ky = hf(zo+ h/2,y0 + k1/2),
(4) k3:hf($0+h/27y0+k2/2)7

ky = hf(zo + h,yo + k3),

k1 + 2ko 4 2ks + ky
5 .

The last quantity Y contains an average of six terms, where two appear
in duplicate: (k1 + ko + ko + ks + ks + k4)/6. A similar average appears
in Simpson’s rule.

Y =yo+

Relationship to calculus methods. If the differential equation
(1) is specialized to the equation y'(z) = F(z), y(xg) = o, to agree
with the previous section, then f(x,y) = F(x) is independent of y and
the three methods of Euler, Heun and RK4 reduce to the rectangular,
trapezoidal and Simpson rules.

To justify the reduction in the case of Heun’s method, start with f(z,y) =
F(z) and observe that by independence of y, variable Y7 is never used.
Compute as follows:

Y =yo+ % (f(wo,y0) + flzo + h, Y1) Apply equation (3).

2Euler is pronounced oiler. Heun rhymes with coin. Runge rhymes with run key.



3.2 Solving ¥ = f(x,y) Numerically 131

= yo+ & (F(xo) + F(xo + h)). Use f(z,y) = F(x).
The right side of the last equation is exactly the trapezoidal rule.

Example (Euler’s Method) Solve ' = —y + 1 — z, y(0) = 3 by Euler's
method for x = 0 to x = 1 in steps of h = 0.1. Produce a table of values
which compares approximate and exact solutions. Graph both the exact
solution y = 2 — x 4+ e~* and the approximate solution.

Solution: Exact solution. The homogeneous solution is y, = ce™®. A
particular solution y, = 2 — z is found by the extended equilibrium method.
Initial condition y(0) =3 givesc=1and theny =yp, +yp, =2 —x + e ".

Table of zy-values. The table starts because of y(0) = 3 with the two values
X =0,Y = 3. The X-values will be X =0 to X =1 in increments of h = 1/10,
making 11 rows total. The Y-values are computed from

Y =yo+ hf(zo,y0) Euler's method.
=yo+h(=yo +1— o) Use f(z,y) = -y +1-=
=0.9yo+0.1(1 — x0) Use h = 0.1.

The pair xg, yo represents the two entries in the current row of the table. The
next table pair X, Y is given by X = 29+h, Y = 0.9y9+0.1(1—x). It is normal
in a computation to do the second pair by hand, then use computing machinery
to reproduce the hand result and finish the computation of the remaining table
rows. Here’s the second pair:

X=x9+h Definition of X-values.
=0.1, Substitute zg =0 and A = 0.1.

Y =0.9y0 + 0.1(1 — o), The simplified recurrence.
=0.9(3)+0.1(1-0) Substitute for row 1, g =0, yo = 3.
=2.8. Second row found: X =0.1, Y = 2.8.

By the same process, the third row is X = 0.2, Y = 2.61. This gives the zy-table
below, in which the exact values from y = 2 — x + e~ are also tabulated.

Table 5. Euler’s method applied with h = 0.1 on 0 < x < 1 to the
problem ¢y = —y+1—z, y(0) = 3.

T Y Exact T Y Exact

0.0 3.00000 3.0000000 0.6 1.93144 1.9488116
0.1 2.80000 2.8048374 0.7 1.77830 1.7965853
0.2 2.61000 2.6187308 0.8 1.63047 1.6493290
0.3 2.42900 2.4408182 0.9 1.48742 1.5065697
0.4 2.25610 2.2703200 1.0 1.34868 1.3678794

0.5 2.09049 2.1065307

See page 133 for maple code which automates Euler’s method. The approximate
solution graphed in Figure 6 is nearly identical to the exact solution y = 2 —
x + e~ *. The maple plot code for Figure 6:
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L:=[0.0,3.00000],[0.1,2.80000],[0.2,2.61000],[0.3,2.42900],
[0.4,2.25610],[0.5,2.09049],[0.6,1.93144],[0.7,1.77830],
[0.8,1.63047],[0.9,1.48742],[1.0,1.34868]:

plot ({[L],2-x+exp(-x)2},x=0..1);

3.0
Figure 6. Euler approximate solution for
13 y = —y+1—u=z, y(0) =3 is nearly identical
) 0 1 to the exact solution y =2 -z +e7 7.

6 Example (Euler and Heun Methods) Solve y = —y +1 — =z, y(0) = 3
by both Euler's method and Heun's method for x = 0 to = 1 in steps of
h = 0.1. Produce a table of values which compares approximate and exact
solutions.

Solution: Table of zy-values. The Euler method was applied in Example 5.
The first pair is 0, 3. The second pair X, Y will be computed by hand below.

X=x9+h Definition of X-values.

=0.1, Substitute zg = 0 and h = 0.1.
Y1 = yo + hf(zo,y0) First Heun formula.

=10+ 0.1(—yo + 1 — xp) Use f(z,y) = —y+1—uz.

= 2.8, Row 1 gives zg, yo9. Same as the

Euler method value.

Y =yo+ h(f(xo,y0) + f(xo + h,Y1))/2, Second Heun formula.
—340.05(-3+1-0-28+1-01) Usexy=0,10=3, Y =2.8.

= 2.805.

Therefore, the second row is X = 0.1, Y = 2.805. By the same process, the
third row is X = 0.2, Y = 2.619025. This gives the zy-table below, in which
the exact values from y = 2 — x + e~ are also tabulated.
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Table 6. Euler and Heun methods applied with h =0.1on 0 <2 <1
to the problem ¢y = —y+ 1 —z, y(0) = 3.

T y-Euler y-Heun Exact
0.0 3.00000 3.00000 3.0000000
0.1 2.80000 2.80500 2.8048374
0.2 2.61000 2.61903 2.6187308
0.3 2.42900 2.44122 2.4408182
0.4 2.25610 2.27080 2.2703200
0.5 2.09049 2.10708 2.1065307
0.6 1.93144 1.94940 1.9488116
0.7 1.77830 1.79721 1.7965853
0.8 1.63047 1.64998 1.6493290
0.9 1.48742 1.50723 1.5065697
1.0 1.34868 1.36854 1.3678794

Computer algebra system. The implementation for maple appears below.
Part of the interface is repetitive execution of a group, which is used here to
avoid loop constructs. The code produces a list L which contains Euler (left
panel) or Heun (right panel) approximations.

# Euler algorithm # Heun algorithm
# Group 1, initialize. # Group 1, initialize.
f:=(x,y)->-y+1-x: fi=(x,y)->-y+1-x:
x0:=0:y0:=3:h:=0.1:L:=[x0,y0] : x0:=0:y0:=3:h:=0.1:L:=[x0,y0]:
# Group 2, repeat 10 times # Group 2, repeat 10 times
Y:=yO+h*f (x0,y0) : Y:=yO+h*f (x0,y0) :
x0:=x0+h:y0:=Y:L:=L, [x0,y0]; Y:=yO+h* (£ (x0,y0)+f (x0+h,Y)) /2:
# Group 3, plot. x0:=x0+h:y0:=Y:L:=L, [x0,y0];
plot ([L]1); # Group 3, plot.

plot ([L1);

Numerical laboratory. The implementation of the Heun method for matlab,
octave and scilab will be described. The code is written into files f.m and
heun.m, which must reside in a default directory. Then [X,Y]=heun(0,3,1,10)
produces the zy-table. The graphic is made with plot(X,Y).

File f.m: function yp = f(x,y)
yp= -y+i-x;

File heun.m: function [X,Y] = heun(x0,y0,x1,n)
h=(x1-x0) /n;X=x0;Y=y0;
for i=1:n;

yl= yO+h*f (x0,y0);

yO= yO+h* (£ (x0,y0)+f (x0+h,y1))/2;
x0=x0+h;

X=[X;x0];Y=[Y;y0];

end

Example (Euler, Heun and RK4 Methods) Solve v/ = —y+1—2z, y(0) =
3 by Euler’'s method, Heun's method and the RK4 method forx =0toxz =1
in steps of h = 0.1. Produce a table of values which compares approximate
and exact solutions.
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Solution: Table of xy-values. The Euler and Heun methods were applied in
Example 6. The first pair is 0, 3. The second pair X, Y will be computed by
hand calculator.

X=x9+h Definition of X-values.
=0.1, Substitute zg = 0 and h = 0.1.
k1 = hf(zo,v0) First RK4 formula.
=0.1(=yo + 1 —m0) Use f(z,y) = —y+1—uz.
=-0.2, Row 1 supplies zg, yo.
ko =hf(zo+h/2,y0+ k1/2) Second RK4 formula.
= 0.1£(0.05,2.9)
= —0.195,
ks = hf(zo+ h/2,y0 + k2/2) Third RK4 formula.
= 0.1£(0.05,2.9025)
= —0.19525,
ky = hf(zo + h,yo + k3) Fourth RK4 formula.
= 0.1f(0.1,2.80475)
= —0.190475,
Y =yo + L(k1 + 2ko + 2k2 + ka), Last RK4 formula.
=3+ £(-1.170975) Use 20 =0, yo = 3, Y1 = 2.8.
= 2.8048375.

Therefore, the second row is X = 0.1, Y = 2.8048375. Continuing, the third
row is X = 0.2, Y = 2.6187309. This gives the xy-table below, in which the
exact values from y = 2 — 2 + ™% are also tabulated.

Table 7. FEuler, Heun and RK4 methods applied with h» = 0.1 on
0 <z <1 to the problem y' = —y+1—z, y(0) = 3.

T y-Euler y-Heun y-RK4 Exact

0.0 3.00000 3.00000 3.0000000 3.0000000
0.1 2.80000 2.80500 2.8048375 2.8048374
0.2 2.61000 2.61903 2.6187309 2.6187308
0.3 2.42900 2.44122 2.4408184 2.4408182
0.4 2.25610 2.27080 2.2703203 2.2703200
0.5 2.09049 2.10708 2.1065309 2.1065307
0.6 1.93144 1.94940 1.9488119 1.9488116
0.7 1.77830 1.79721 1.7965856 1.7965853
0.8 1.63047 1.64998 1.6493293 1.6493290
0.9 1.48742 1.50723 1.5065700 1.5065697
1.0 1.34868 1.36854 1.3678798 1.3678794

Computer algebra system. The implementation of RK4 for maple appears
below, as a modification of the code for Example 6.



3.2 Solving ¥ = f(x,y) Numerically 135

# Group 2, repeat 10 times.
k1:=hx*f (x0,y0):

k2:=h*f (x0+h/2,y0+k1/2):
k3:=h*f (x0+h/2,y0+k2/2) :

k4 :=h*f (x0+h,y0+k3) :

Y:=y0+ (k1+2xk2+2*k3+k4) /6:
x0:=x0+h:y0:=Y:L:=L, [x0,yO0] ;

Numerical laboratory. The implementation of RK4 for matlab, octave
and scilab appears below, to be added to the code for Example 6. The
code is written into file rk4.m, which must reside in a default directory. Then
[X,Y]=rk4(0,3,1,10) produces the xy-table.

function [X,Y] = rk4(x0,y0,x1,n)
h=(x1-x%0) /n;X=x0;Y=y0;

for i=1:n;

k1=h*f (x0,y0) ;

k2=h*f (x0+h/2,y0+k1/2) ;
k3=h*f (x0+h/2,y0+k2/2) ;
k4=hx*f (x0+h,y0+k3) ;

yO=y0+ (k1+2+k2+2%k3+k4) /6
x0=x0+h;
X=[X;x0];Y=[Y;y0];

end

Mbotivation for the three methods. The entry point to the study
is the equivalent integral equation

(5) (@) = yo + / "ty (1))t

The ideas can be explained by replacement of the integral in (5) by
the rectangular, trapezoidal or Simpson rule. Unknown values of y that
appear are subsequently replaced by suitable approximations. These
approximations, known as predictors and correctors, are defined as
follows from the integral formula y(b) = y(a) + [ f(z,y(z))dx, by as-
suming the integrand is a constant C' (the idea is due to Euler).

Predictor Y = y(a) + (b — a) f(a,Y™). Given an estimate or exact value
Y* for y(a), then variable Y predicts y(b). The approximation as-
sumes the integrand in (5) constantly C' = f(a,Y™).

Corrector Y = y(a) + (b — a)f(b,Y™). Given an estimate or exact value
Y** for y(b), then variable Y corrects y(b). The approximation as-
sumes the integrand in (5) constantly C' = f(b, Y**).

Euler’s method. Replace in (5) z = o + h and apply the rectangular
rule to the integral. The resulting approximation is known as Euler’s
method:

(6) y(xo+h) =Y =yo+ hf(zo,y0)
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Heun’s method. Replace in (5) x = 29 + h and apply the trapezoidal
rule to the integral, to get

h
y(zo+h) = yo+ 5 (f(zo,y(zo) + f(wo + h,y(wo + 1))
The troublesome expressions are y(zg) and y(zo + h). The first is yo.
The second can be estimated by the predictor yg + hf(zo,y0). The
resulting approximation is known as Heun’s method or the modified
Euler method:

Yl ="%Yo + hf(w07y0)7

7 h

O et~ Y =0+ E (@m0 + Flao + ).

RK4 method. Replace in (5) = xo + h and apply Simpson’s rule to
the integral. This gives y(zo + h) = yo + S where the Simpson estimate
S is given by

h

8) S= 5 (f (o, y(z0) +4f(M,y(M)) + f(x0 + hyy(x0 + h)))

and M = xy + h/2 is the midpoint of [xg,z¢ + h]. The troublesome
expressions in S are y(zo), y(M) and y(xzo+ h). The work of Runge and
Kutta shows that

e Expression y(zg) is replaced by yo.

e Expression y(M) can be replaced by either Y7 or Ys, where Y] =
yo + 0.5hf(x0, o) is a predictor and Y5 = yo + 0.5hf (M, Y1) is a
corrector.

e Expression y(zg + h) can be replaced by Y3 = yo + hf(M,Ys).
This replacement arises from the predictor y(zg + h) ~ y(M) +
0.5hf(M,y(M)) by using corrector y(M) ~ yo+0.5hf (M, y(M))
and then replacing y(M) by Ys.

The formulas of Runge-Kutta result by using the above replacements
for y(xo), y(M) and y(xo + h), with the caveat that f(M,y(M)) gets
replaced by the average of f(M,Y7) and f(M,Y3). In detail,

65 = hf(zo,y(xo) + 4hf(M,y(M)) + hf(zo + h,y(zo + h))
f(M, Y1) + f(M,Y5)

~ hf(xo,yo) + 4h 5

=k + 2ko + 2ks + k4

where the RK4 quantities ki, ko, k3, ks are defined by (4), page 130.
The resulting approximation is known as the RK4 method.



