Vector Space V

It is a data set \boldsymbol{V} plus a toolkit of eight (8) algebraic properties. The data set consists of packages of data items, called vectors, denoted $\overrightarrow{\boldsymbol{X}}$.

Closure The operations $\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}}$ and $\boldsymbol{k} \overrightarrow{\boldsymbol{X}}$ are defined and result in a new vector which is also in the set \boldsymbol{V}.
Addition

$$
\begin{aligned}
& \vec{X}+\vec{Y}_{n}=\vec{Y}+\vec{X} \\
& \vec{X}+(\vec{Y}+\vec{Z})=(\vec{Y}+\vec{X})+\vec{Z} \\
& \text { Vector } \overrightarrow{0} \text { is defined and } \overrightarrow{0}+\overrightarrow{\boldsymbol{X}}=\vec{X} \\
& \text { Vector }-\vec{X} \text { is defined and } \vec{X}+(-\vec{X})=\overrightarrow{0} \\
& \boldsymbol{k}(\vec{X}+\vec{Y})=k \vec{X}+k \vec{Y} \\
& \left(k_{1}+k_{2}\right) \vec{X}=k_{1} \vec{X}+k_{2} \vec{X} \\
& k_{1}\left(k_{2} \vec{X}\right)=\left(k_{1} k_{2}\right) \vec{X} \\
& 1 \vec{X}=\vec{X}
\end{aligned}
$$

Scalar multiply

commutative

 associative zero negative distributive I distributive II distributive III identity

Figure 1. A Vector Space is a data storage system.

Definition. A subspace \boldsymbol{S} of a vector space \boldsymbol{V} is a nonvoid subset of \boldsymbol{V} which under the operations + and \cdot of \boldsymbol{V} forms a vector space in its own right. We call \boldsymbol{S} a working set, because the purpose of identifying a subspace is to shrink the original data set \boldsymbol{V} into a smaller data set \boldsymbol{S}, customized for the application under study.

Subspaces, or working sets, are recognized as follows.
Subspace Criterion. Let \boldsymbol{S} be a subset of \boldsymbol{V} such that

1. Vector $\mathbf{0}$ is in \boldsymbol{S}.
2. If \vec{X} and \vec{Y} are in \boldsymbol{S}, then $\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}}$ is in \boldsymbol{S}.
3. If \vec{X} is in \boldsymbol{S}, then $\boldsymbol{c} \overrightarrow{\boldsymbol{X}}$ is in \boldsymbol{S}.

Then \boldsymbol{S} is a subspace of \boldsymbol{V}.

Items 2, $\mathbf{3}$ can be summarized as all linear combinations of vectors in \boldsymbol{S} are again in \boldsymbol{S}.

Theorem 1 (Kernel Theorem)

Let \boldsymbol{V} be one of the vector spaces \boldsymbol{R}^{n} and let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix. Define a smaller set S of data items in \boldsymbol{V} by the kernel equation

$$
S=\{\mathrm{x}: \mathrm{x} \text { in } V, \quad A \mathrm{x}=0\}
$$

Then \boldsymbol{S} is a subspace of \boldsymbol{V}.
In particular, operations of addition and scalar multiplication applied to data items in S give answers back in S, and the 8-property toolkit applies to data items in S.

Proof: Zero is in \boldsymbol{V} because $\boldsymbol{A 0}=\mathbf{0}$ for any matrix \boldsymbol{A}. To verify the subspace criterion, we verify that $\mathrm{z}=c_{1} \mathrm{x}+c_{2} \mathrm{y}$ for x and y in V also belongs to V. The details:

$$
\begin{aligned}
A \mathrm{z} & =A\left(c_{1} \mathrm{x}+c_{2} \mathrm{y}\right) \\
& =A\left(c_{1} \mathrm{x}\right)+A\left(c_{2} \mathrm{y}\right) \\
& =c_{1} A \mathrm{x}+c_{2} A \mathrm{y} \\
& =c_{1} 0+c_{2} 0 \\
& =0
\end{aligned}
$$

$$
=c_{1} 0+c_{2} 0 \quad \text { Because } A \mathrm{x}=A \mathrm{y}=0, \text { due to } \mathrm{x}, \mathrm{y} \text { in } V .
$$

$$
\text { Therefore, } \boldsymbol{A} \mathrm{z}=0, \text { and } \mathrm{z} \text { is in } \boldsymbol{V} \text {. }
$$

The proof is complete.

Independence test for two vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$

In an abstract vector space \boldsymbol{V}, form the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=0
$$

Solve this equation for $\boldsymbol{c}_{1}, \boldsymbol{c}_{\mathbf{2}}$. Then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are independent in \boldsymbol{V} if and only if the system has unique solution $c_{1}=c_{2}=0$.

Illustration

Two column vectors are tested for independence by forming the system of equations $\boldsymbol{c}_{1} \mathbf{v}_{\mathbf{1}}+\boldsymbol{c}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}=\mathbf{0}$, e.g,

$$
c_{1}\binom{-1}{1}+c_{2}\binom{2}{1}=\binom{0}{0}
$$

This is a homogeneous system $\boldsymbol{A c}=\mathbf{0}$ with

$$
A=\left(\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right), \quad \mathbf{c}=\binom{c_{1}}{c_{2}}
$$

The system $A \mathbf{c}=\mathbf{0}$ can be solved for \mathbf{c} by rref methods. Because $\operatorname{rref}(A)=I$, then $\boldsymbol{c}_{\mathbf{1}}=\boldsymbol{c}_{\mathbf{2}}=\mathbf{0}$, which verifies independence. If the system $\boldsymbol{A c}=\mathbf{0}$ is square, then $\operatorname{det}(\boldsymbol{A}) \neq \mathbf{0}$ applies to test independence.
There is no chance to use determinants when the system is not square, e.g., consider the homogeneous system

$$
c_{1}\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

It has vector-matrix form $\boldsymbol{A c}=\mathbf{0}$ with $\mathbf{3} \times \mathbf{2}$ matrix \boldsymbol{A}, for which $\operatorname{det}(A)$ is undefined.

Rank Test

In the vector space \boldsymbol{R}^{n}, the key to detection of independence is zero free variables, or nullity zero, or equivalently, maximal rank. The test is justified from the formula nullity $(\boldsymbol{A})+\operatorname{rank}(\boldsymbol{A})=\boldsymbol{k}$, where \boldsymbol{k} is the column dimension of \boldsymbol{A}.

Theorem 2 (Rank-Nullity Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be k column vectors in \boldsymbol{R}^{n} and let \boldsymbol{A} be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A)=$ \boldsymbol{k} and dependent if $\operatorname{rank}(\boldsymbol{A})<\boldsymbol{k}$. The conditions are equivalent to $\operatorname{nullity}(A)=0$ and $\operatorname{nullity}(A)>0$, respectively.

Determinant Test

In the unusual case when the system arising in the independence test can be expressed as $\boldsymbol{A c}=\mathbf{0}$ and \boldsymbol{A} is square, then $\operatorname{det}(\boldsymbol{A})=\mathbf{0}$ detects dependence, and $\operatorname{det}(A) \neq 0$ detects independence. The reasoning is based upon the adjugate formula $A^{-1}=\operatorname{adj}(A) / \operatorname{det}(A)$, valid exactly when $\operatorname{det}(A) \neq$ 0.

Theorem 3 (Determinant Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be \boldsymbol{n} column vectors in \boldsymbol{R}^{n} and let \boldsymbol{A} be the augmented matrix of these vectors. The vectors are independent if $\operatorname{det}(A) \neq 0$ and dependent if $\operatorname{det}(\boldsymbol{A})=0$.

Not a Subspace Theorem

Theorem 4 (Testing S not a Subspace)
Let \boldsymbol{V} be an abstract vector space and assume \boldsymbol{S} is a subset of \boldsymbol{V}. Then S is not a subspace of \boldsymbol{V} provided one of the following holds.
(1) The vector 0 is not in S.
(2) Some x and -x are not both in S.
(3) Vector $\mathrm{x}+\mathrm{y}$ is not in S for some x and y in S.

Proof: The theorem is justified from the Subspace Criterion.

1. The criterion requires 0 is in S.
2. The criterion demands $c \mathrm{x}$ is in S for all scalars c and all vectors x in S.
3. According to the subspace criterion, the sum of two vectors in S must be in S.
