Vector Space VIt is a data set V plus a toolkit of eight (8) algebraic properties. The data set consists of packages of data items, called vectors, denoted \vec{X} .

Closure	The operations $\vec{X} + \vec{Y}$ and $k\vec{X}$ are defined and result in a new vector	
	which is also in the set V.	
Addition	$ec{X}+ec{Y}=ec{Y}+ec{X}$	commutative
	$ec{X}+(ec{Y}+ec{Z})=(ec{Y}+ec{X})+ec{Z}$	associative
	Vector $\vec{0}$ is defined and $\vec{0} + \vec{X} = \vec{X}$	zero
	Vector $-\vec{X}$ is defined and $\vec{X} + (-\vec{X}) = \vec{0}$	negative
Scalar	$k(ec{X}+ec{Y})=kec{X}+kec{Y}$	distributive I
multiply	$(k_1+k_2)ec{X}=k_1ec{X}+k_2ec{X}$	distributive II
	$k_1(k_2ec X) = (k_1k_2)ec X$	distributive III
	$1ec{X} = ec{X}$	identity

Figure 1. A Vector Space is a data storage system.

Definition. A subspace S of a vector space V is a nonvoid subset of V which under the operations + and \cdot of V forms a vector space in its own right. We call S a working set, because the purpose of identifying a subspace is to shrink the original data set V into a smaller data set S, customized for the application under study.

Subspaces, or working sets, are recognized as follows.

Subspace Criterion. Let S be a subset of V such that

- 1. Vector 0 is in S.
- 2. If \vec{X} and \vec{Y} are in S, then $\vec{X} + \vec{Y}$ is in S.
- 3. If \vec{X} is in S, then $c\vec{X}$ is in S.

Then S is a subspace of V.

Items 2, 3 can be summarized as all linear combinations of vectors in S are again in S.

Theorem 1 (Kernel Theorem)

Let V be one of the vector spaces \mathbb{R}^n and let A be an $m \times n$ matrix. Define a smaller set S of data items in V by the kernel equation

$$S = \{ \mathbf{x} : \mathbf{x} \text{ in } V, \quad A\mathbf{x} = 0 \}.$$

Then S is a subspace of V.

In particular, operations of addition and scalar multiplication applied to data items in S give answers back in S, and the 8-property toolkit applies to data items in S.

Proof: Zero is in *V* because A0 = 0 for any matrix *A*. To verify the subspace criterion, we verify that $z = c_1 x + c_2 y$ for x and y in *V* also belongs to *V*. The details:

$$\begin{aligned} Az &= A(c_1 x + c_2 y) \\ &= A(c_1 x) + A(c_2 y) \\ &= c_1 A x + c_2 A y \\ &= c_1 0 + c_2 0 \\ &= 0 \end{aligned}$$

Because $Ax = Ay = 0$, due to x, y in V
Therefore, $Az = 0$, and z is in V.

The proof is complete.

Independence test for two vectors v_1, v_2 —

In an abstract vector space V, form the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = 0.$$

Solve this equation for c_1 , c_2 . Then v_1 , v_2 are independent in V if and only if the system has unique solution $c_1 = c_2 = 0$.

Illustration

Two column vectors are tested for independence by forming the system of equations $c_1v_1 + c_2v_2 = 0$, e.g.,

$$c_1 \left(egin{array}{c} -1 \ 1 \end{array}
ight) + c_2 \left(egin{array}{c} 2 \ 1 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \end{array}
ight)$$

This is a homogeneous system Ac = 0 with

The system Ac = 0 can be solved for c by rref methods. Because rref(A) = I, then $c_1 = c_2 = 0$, which verifies independence. If the system Ac = 0 is square, then $det(A) \neq 0$ applies to test independence.

There is no chance to use determinants when the system is not square, e.g., consider the homogeneous system

$$c_1 \left(egin{array}{c} -1 \ 1 \ 0 \end{array}
ight) + c_2 \left(egin{array}{c} 2 \ 1 \ 0 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight).$$

It has vector-matrix form Ac = 0 with 3×2 matrix A, for which det(A) is undefined.

Rank Test

In the vector space \mathbb{R}^n , the key to detection of independence is **zero free variables**, or nullity zero, or equivalently, maximal rank. The test is justified from the formula $\operatorname{nullity}(\mathbb{A}) + \operatorname{rank}(\mathbb{A}) = \mathbb{k}$, where \mathbb{k} is the column dimension of \mathbb{A} .

Theorem 2 (Rank-Nullity Test)

Let v_1, \ldots, v_k be k column vectors in \mathbb{R}^n and let A be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A) = k$ and dependent if $\operatorname{rank}(A) < k$. The conditions are equivalent to $\operatorname{nullity}(A) = 0$ and $\operatorname{nullity}(A) > 0$, respectively.

Determinant Test

In the unusual case when the system arising in the independence test can be expressed as Ac = 0 and A is square, then $\det(A) = 0$ detects dependence, and $\det(A) \neq 0$ detects independence. The reasoning is based upon the adjugate formula $A^{-1} = \operatorname{adj}(A) / \det(A)$, valid exactly when $\det(A) \neq 0$.

Theorem 3 (Determinant Test)

Let v_1, \ldots, v_n be n column vectors in \mathbb{R}^n and let A be the augmented matrix of these vectors. The vectors are independent if $\det(A) \neq 0$ and dependent if $\det(A) = 0$.

Not a Subspace Theorem

Theorem 4 (Testing S not a Subspace)

Let V be an abstract vector space and assume S is a subset of V. Then S is not a subspace of V provided one of the following holds.

- (1) The vector 0 is not in S.
- (2) Some x and -x are not both in S.
- (3) Vector $\mathbf{x} + \mathbf{y}$ is not in S for some \mathbf{x} and \mathbf{y} in S.

Proof: The theorem is justified from the *Subspace Criterion*.

- **1**. The criterion requires **0** is in **S**.
- 2. The criterion demands cx is in S for all scalars c and all vectors x in S.
- 3. According to the subspace criterion, the sum of two vectors in S must be in S.