Definitions

Pivot of $\boldsymbol{A} \quad$ A column in $\operatorname{rref}(\boldsymbol{A})$ which contains a leading one has a corresponding column in \boldsymbol{A}, called a pivot column of \boldsymbol{A}.
Basis of \boldsymbol{V} It is an independent set $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}$ from data set \boldsymbol{V} whose linear combinations generate all data items in \boldsymbol{V}. Generally, a basis is discovered by taking partial derivatives on symbols representing arbitrary constants.

Main Results

Theorem 1 (Dimension)

If a vector space V has a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ and also a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{q}$, then $\boldsymbol{p}=\boldsymbol{q}$. The dimension of \boldsymbol{V} is this unique number \boldsymbol{p}.
Theorem 2 (The Pivot Theorem)

- The pivot columns of a matrix \boldsymbol{A} are linearly independent.
- A non-pivot column of \boldsymbol{A} is a linear combination of the pivot columns of \boldsymbol{A}.

Definitions

$$
\begin{array}{ll}
\operatorname{rank}(A) & \text { The number of leading ones in } \operatorname{rref}(\boldsymbol{A}) \\
\operatorname{nullity}(A) & \text { The number of columns of } A \text { minus } \operatorname{rank}(A)
\end{array}
$$

Main Results

Theorem 3 (Rank-Nullity Equation)

$\operatorname{rank}(\boldsymbol{A})+\operatorname{nullity}(\boldsymbol{A})=$ column dimension of \boldsymbol{A}

Theorem 4 (Row Rank Equals Column Rank)

The number of independent rows of a matrix \boldsymbol{A} equals the number of independent columns of \boldsymbol{A}. Equivalently, $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{T}\right)$.

Theorem 5 (Pivot Method)

Let \boldsymbol{A} be the augmented matrix of $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}$. Let the leading ones in $\operatorname{rref}(\boldsymbol{A})$ occur in columns i_{1}, \ldots, i_{p}. Then a largest independent subset of the k vectors $\mathrm{v}_{\mathbf{1}}, \ldots, \mathrm{v}_{\boldsymbol{k}}$ is the set

$$
\mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}, \ldots, \mathbf{v}_{i_{p}}
$$

Definitions

$\operatorname{kernel}(A)=\operatorname{nullspace}(A)=\{\mathrm{x}: A \mathrm{x}=0\}$.
$\operatorname{Image}(A)=\operatorname{colspace}(A)=\{\mathrm{y}: \mathrm{y}=\boldsymbol{A} \mathrm{x}$ for some x$\}$.
$\operatorname{rowspace}(A)=\operatorname{colspace}\left(A^{T}\right)=\left\{\mathrm{w}: \mathrm{w}=A^{T} \mathrm{y}\right.$ for some y$\}$. $\operatorname{dim}(V)$ is the number of elements in a basis for V.

How to Compute Null, Row, Column Space

Null Space. Compute $\operatorname{rref}(A)$. Write out the general solution x to $\boldsymbol{A x}=\mathbf{0}$, where the free variables are assigned parameter names t_{1}, \ldots, t_{k}. Report the basis for nullspace (A) as the list $\partial_{t_{1}} \mathrm{x}, \ldots, \partial_{t_{k}} \mathrm{x}$.
Column Space. Compute $\operatorname{rref}(A)$. Identify the pivot columns $i_{1}, \ldots, \boldsymbol{i}_{k}$. Report the basis for colspace (\boldsymbol{A}) as the list of columns $\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{k}$ of \boldsymbol{A}.
Row Space. Compute $\operatorname{rref}\left(\boldsymbol{A}^{T}\right)$. Identify the lead variable columns i_{1}, \ldots, \boldsymbol{i}_{k}. Report the basis for rowspace (\boldsymbol{A}) as the list of rows $\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}$ of \boldsymbol{A}. Alternatively, compute $\operatorname{rref}(\boldsymbol{A})$, then rowspace (\boldsymbol{A}) has a different basis consisting of the list of nonzero rows of $\operatorname{rref}(\boldsymbol{A})$.

Theorem 6 (Dimension Identities)
(a) $\operatorname{dim}(\operatorname{nullspace}(A))=\operatorname{dim}(\operatorname{kernel}(A))=\operatorname{nullity}(A)$
(b) $\operatorname{dim}(\operatorname{colspace}(A))=\operatorname{dim}(\operatorname{Image}(A))=\operatorname{rank}(A)$
(c) $\operatorname{dim}(\operatorname{rowspace}(A))=\operatorname{rank}(A)$
(d) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}(\operatorname{Image}(A))=$ column dimension of A
(e) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}\left(\operatorname{kernel}\left(A^{T}\right)\right)=$ column dimension of A

Theorem 7 (Equivalence Test for Bases)

Define augmented matrices

$$
B=\operatorname{aug}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right), \quad C=\operatorname{aug}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\ell}\right), \quad W=\operatorname{aug}(B, C)
$$

Then relation

$$
k=\ell=\operatorname{rank}(B)=\operatorname{rank}(C)=\operatorname{rank}(W)
$$

implies

1. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is an independent set.
2. $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ is an independent set.
3. $\operatorname{span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\}=\operatorname{span}\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\ell}\right\}$

In particular, colspace $(\boldsymbol{B})=$ colspace (\boldsymbol{C}) and each set of vectors is an equivalent basis for this vector space.

Proof: Because $\operatorname{rank}(\boldsymbol{B})=\boldsymbol{k}$, then the first \boldsymbol{k} columns of \boldsymbol{W} are independent. If some column of \boldsymbol{C} is independent of the columns of \boldsymbol{B}, then W would have $k+1$ independent columns, which violates $k=\operatorname{rank}(W)$. Therefore, the columns of C are linear combinations of the columns of \boldsymbol{B}. Then vector space colspace (\boldsymbol{C}) is a subspace of vector space colspace (\boldsymbol{B}). Because both vector spaces have dimension \boldsymbol{k}, then $\operatorname{colspace}(\boldsymbol{B})=$ colspace (\boldsymbol{C}). The proof is complete.

Equivalent Bases: Computer Illustration

The following maple code applies the theorem to verify that two bases are equivalent:

1. The basis is determined from the colspace command in maple.
2. The basis is determined from the pivot columns of \boldsymbol{A}.

In maple, the report of the column space basis is identical to the nonzero rows of $\operatorname{rref}\left(\boldsymbol{A}^{T}\right)$.

```
with(linalg):
A:=matrix([[1,0,3],[3,0,1],[4,0,0]]);
colspace(A); # Solve Ax=0, basis v1,v2 below
v1:=vector([2,0,-1]);v2:=vector([0,2,3]);
rref(A); # Find the pivot cols=1,3
u1:=col(A,1); u2:=col(A,3); # pivot col basis
B:=augment(v1,v2); C:=augment(u1,u2);
W:=augment (B,C);
rank(B),rank(C),rank(W); # Test requires all equal 2
```


A False Test for Equivalent Bases

The relation

$$
\operatorname{rref}(B)=\operatorname{rref}(C)
$$

holds for a substantial number of matrices \boldsymbol{B} and \boldsymbol{C}. However, it does not imply that each column of \boldsymbol{C} is a linear combination of the columns of \boldsymbol{B}.
For example, define

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\operatorname{rref}(B)=\operatorname{rref}(C)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

but $\operatorname{col}(\boldsymbol{C}, \mathbf{2})$ is not a linear combination of the columns of \boldsymbol{B}. This means $\operatorname{colspace}(B) \neq \operatorname{colspace}(C)$.
Geometrically, the column spaces are planes in \boldsymbol{R}^{3} which intersect only along the line L through the two points $(0,0,0)$ and $(1,0,1)$.

