Elementary Matrices An elementary matrix \boldsymbol{E} is the result of applying a combination, multiply or swap rule to the identity matrix. The computer algebra system maple displays typical 4×4 elementary matrices ($\mathrm{C}=$ Combination, $\mathrm{M}=$ Multiply, $\mathrm{S}=$ Swap) as follows.

```
with(linalg): 隹th(LinearAlgebra):
Id:=diag(1,1,1,1); Id:=IdentityMatrix(4);
C:=addrow (Id,2,3, c); C:=RowOperation(Id, [3, 2], c);
M:=mulrow (Id,3,m); M:=RowOperation (Id, 3,m);
S:=swaprow (Id,1,4); S:=RowOperation(Id,[4,1]);
```

The answers:

$$
\begin{gathered}
C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad M=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & m & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
S=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Constructing elementary matrices \boldsymbol{E}
Mult \quad Change a one in the identity matrix to symbol $\boldsymbol{m} \neq 0$.
Combo Change a zero in the identity matrix to symbol c.
Swap Interchange two rows of the identity matrix.
Constructing \boldsymbol{E}^{-1} from elementary matrix E
Mult \quad Change diagonal multiplier $m \neq 0$ in E to $1 / m$.
Combo Change multiplier \boldsymbol{c} in \boldsymbol{E} to $-\boldsymbol{c}$.
Swap The inverse of \boldsymbol{E} is \boldsymbol{E} itself.

Theorem 1 (The rref and elementary matrices)
Let \boldsymbol{A} be a given matrix of row dimension \boldsymbol{n}. Then there exist $\boldsymbol{n} \times \boldsymbol{n}$ elementary matrices $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots, \boldsymbol{E}_{k}$ such that

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A
$$

The result is the observation that left multiplication of matrix \boldsymbol{A} by elementary matrix \boldsymbol{E} gives the answer $\boldsymbol{E} \boldsymbol{A}$ for the corresponding multiply, combination or swap operation. The matrices $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots$ represent the multiply, combination and swap operations performed in the frame sequence which take the First Frame into the Last Frame, or equivalently, original matrix \boldsymbol{A} into $\operatorname{rref}(\boldsymbol{A})$.

A certain 6-frame sequence.

$$
\begin{array}{ll}
\boldsymbol{A}_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 0 \\
3 & 6 & 3
\end{array}\right) & \text { Frame 1, original matrix. } \\
\boldsymbol{A}_{2}=\left(\begin{array}{rlr}
1 & 2 & 3 \\
0 & 0 & -6 \\
3 & 6 & 3
\end{array}\right) & \text { Frame 2, combo(1,2,-2). } \\
\boldsymbol{A}_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
3 & 6 & 3
\end{array}\right) & \text { Frame 3, mult(2,-1/6). } \\
\boldsymbol{A}_{4}=\left(\begin{array}{ll}
1 & 2 \\
0 & 0 \\
0 & 0 \\
\hline
\end{array}\right) & \text { Frame 4, combo(1,3,-3). } \\
\boldsymbol{A}_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & \text { Frame 5, combo(2,3,-6). } \\
\boldsymbol{A}_{6}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & \text { Frame 6, combo(2,1,-3). Found } \operatorname{rref}\left(A_{1}\right) .
\end{array}
$$

The corresponding 3×3 elementary matrices are
$\boldsymbol{E}_{1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ Frame 2, combo(1,2,-2) applied to \boldsymbol{I}.
$\boldsymbol{E}_{2}=\left(\begin{array}{rrr}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -1 / 6 & 0 \\ \mathbf{0} & \mathbf{0} & 1\end{array}\right) \quad$ Frame 3, mult(2,-1/6) applied to \boldsymbol{I}.
$\boldsymbol{E}_{3}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right) \quad$ Frame 4, combo(1,3,-3) applied to I.
$\boldsymbol{E}_{4}=\left(\begin{array}{rrr}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & -6 & 1\end{array}\right) \quad$ Frame 5, combo(2,3,-6) applied to \boldsymbol{I}.
$\boldsymbol{E}_{5}=\left(\begin{array}{rrr}1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ Frame 6, combo(2,1,-3) applied to I.

The frame sequence can be written as follows.

$$
\begin{aligned}
& A_{2}=E_{1} A_{1} \\
& A_{3}=E_{2} A_{2} \\
& A_{4}=E_{3} A_{3} \\
& A_{5}=E_{4} A_{4} \\
& A_{6}=E_{5} A_{5} \\
& A_{6}=E_{5} E_{4} E_{3} E_{2} E_{1} A_{1} \\
& \text { Frame 2, } \boldsymbol{E}_{1} \text { equals } \\
& \text { combo(} 1,2,-2 \text {) on } I \text {. } \\
& \text { Frame 3, } \boldsymbol{E}_{\mathbf{2}} \text { equals } \\
& \text { mult(} 2,-1 / 6 \text {) on } \boldsymbol{I} \text {. } \\
& \text { Frame } 4, \boldsymbol{E}_{3} \text { equals } \\
& \text { combo(} 1,3,-3 \text {) on } \boldsymbol{I} \text {. } \\
& \text { Frame 5, } \boldsymbol{E}_{4} \text { equals } \\
& \text { combo(} 2,3,-6 \text {) on } \boldsymbol{I} \text {. } \\
& \text { Frame 6, } \boldsymbol{E}_{5} \text { equals } \\
& \text { combo(} 2,1,-3 \text {) on } \boldsymbol{I} \text {. } \\
& \text { Summary frames 1-6. }
\end{aligned}
$$

Then

$$
\operatorname{rref}\left(A_{1}\right)=E_{5} E_{4} E_{3} E_{2} E_{1} A_{1}
$$

which is the result of the Theorem.

The summary:

$$
A_{6}=\left(\begin{array}{rrr}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -6 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -\frac{1}{6} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A_{1}
$$

Because $\boldsymbol{A}_{6}=\operatorname{rref}\left(\boldsymbol{A}_{1}\right)$, the above equation gives the inverse relationship

$$
A_{1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} \operatorname{rref}\left(A_{1}\right)
$$

Each inverse matrix is simplified by the rules for constructing \boldsymbol{E}^{-1} from elementary matrix \boldsymbol{E}, the result being

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \operatorname{rref}\left(A_{1}\right)
$$

