\qquad

Math 2250 Maple Project 3: Numerical Methods January 2008

Due date: See the internet due dates. Maple lab 3 has four problems L3.1, L3.2, L3.3, L3.4.
References: Code in maple appears in 2250mapleL3-S2008.txt at URL http://www.math.utah.edu/~gustafso/. This document: $2250 \mathrm{mapleL3}-\mathrm{S} 2008 \mathrm{bdf}$. Other related and required documents are available at the web site:

- Numerical Solution of First Order DE (typeset, 19 pages, 220k pdf). A resource similar to the textbook, with maple examples and deeper detail. It is for a second reading, in case Edwards-Penney left too many questions unanswered.
- Sample Report for 2.4-3 (pdf 3 pages, 350k). This outline might be useful, if you are confused about which details to include.
- Numerical DE coding hints, TEXT Document (1 page, 2k). This document is appended here, for completeness. The web copy 2250mapleL3-S2008. txt is suited for mouse copying.
- Sample maple code for Euler, Heun, RK4 (maple worksheet). Use 2250mapleL3-S2008-snips.mws to load maple sample code without mouse copying.
- Sample maple code for exact/error reporting (maple worksheet). Normally not useful, because a hand calculator can do it faster.

Problem L3.1. (E \& P Exercise 2.4-6, Symbolic Solution)

The symbolic solution of $y^{\prime}=-2 x y, y(0)=2$ is $y=2 e^{-x^{2}}$. Using methods from the textbook, Chapter 1 , display the details of the derivation for this symbolic solution, plus a full answer check.
\qquad

Math 2250 Maple Project 3: Numerical Methods
 January 2008

References: Code in maple appears in 2250mapleL3-S2008.txt at URL http://www.math.utah.edu/~gustafso/. This document: 2250mapleL3-S2008.pdf. Other related and required documents are available at the web site:

- Numerical Solution of First Order DE (typeset, 19 pages, 220k pdf). A resource similar to the textbook, with maple examples and deeper detail. It is for a second reading, in case Edwards-Penney left too many questions unanswered.
- Sample Report for 2.4-3 (pdf 3 pages, 350 k). This outline might be useful, if you are confused about which details to include.
- Numerical DE coding hints, TEXT Document (1 pages, 2 k). This document is appended here, for completeness. The web copy 2250mapleL3-S2008.txt is suited for mouse copying.
- Sample maple code for Euler, Heun, RK4 (maple worksheet). Use 2250mapleL3-S2008-snips.mws to load maple sample code without mouse copying.
- Sample maple code for exact/error reporting (maple worksheet). Normally not useful, because a hand calculator can do it faster.

Problem L3.2. (E \& P Exercise 2.4-6)

Consider the initial value problem $y^{\prime}=-2 x y, y(0)=2$ with symbolic solution $y=2 e^{-x^{2}}$. Apply Euler's method to produce two dot tables, as follows. The first has three rows, $h=0.25$. The second has six rows, $h=0.1$. Reproduce the table below and fill in missing digits. Follow the sample report for Edwards-Penney Exercise 2.4-3:

http://www.math.utah.edu/~gustafso/2250SampleProblem2.4-3.pdf

Reference L3.1 for the symbolic solution. Hand written work includes a check of the dot table answer against the hand calculator for $x=x_{0}+h$. The symbol x_{0} appears in initial data $y\left(x_{0}\right)=y_{0}$. This is one algorithm step by hand calculator.

h	actual $y(.5)$	approx $y(.5)$
0.25	1.558	$1.750 ? ? ? ? ?$
0.1	1.558	$1.627 ? 076 ?$

Problem L3.3. ($\mathbf{E} \& \mathbf{P}$ Exercise 2.5-6)

Consider the initial value problem $y^{\prime}=-2 x y, y(0)=2$ with symbolic solution $y=2 e^{-x^{2}}$. Apply Heun's method (Improved Euler) to produce one dot table of six rows, $h=0.1$. Reproduce the table below and fill in missing digits. Follow the sample report for Exercise 2.4-3 as in problem L3.2 above. Hand written work includes a check of the dot table answer against the hand calculator answer for $x=x_{0}+h$.

x	0.0	0.1	0.2	0.3	0.4	0.5
actual $y(x)$	2.000000000	1.980099667	1.921578878	1.827862371	1.704287578	1.557601566
approx $y(x)$	2.0000000	$1.980 ? ? ? ?$	$1.921 ? ? ? ?$	$1.827 ? ? ? ?$	$1.704 ? ? ? ?$	$1.557 ? ? ? ?$

Problem L3.4. (E \& P Exercise 2.6-6)

Consider the initial value problem $y^{\prime}=-2 x y, y(0)=2$ with symbolic solution $y=2 e^{-x^{2}}$. Apply the RK4 method to produce one dot table of three rows, $h=0.25$. Reproduce the table below, filling in the missing digits. Follow the sample report for Exercise 2.4-3 as in problem L3.2 above. Forget hand calculator checks, because the table suggests that comparison with the symbolic solution is enough.

x	0.00	0.25	0.50
actual $y(x)$	2.000000000	1.878826126	1.557601566
approx $y(x)$	2.000000000	$1.8788 ? ? ? ? 0$	$1.557 ? ? 329 ?$

Staple this page on top of your hand-written and maple worksheet report
\#Dr. Gustafson,
\#I am in your 2250-4 class and am continually struggling with the codes for \#the problems in section 2.4, 2.5, and 2.6. Actually 2.5 (Improved Euler) \#seems to be going pretty well, but I can't get very good results for 2.4 \#(Euler) or 2.6 (Runge-Kutta Idea). Is there a website where I may be able \#to find help and/or codes on these sections, as nothing I type in for my \#codes will seem to work? Thanks for your time.

```
# ============================================
# Can't copy with the mouse? A work-around:
# ==========================================
# Run the application "xclipboard &" to capture the mouse copies of this
# file. Keep xclipboard near the xmaple window. Go to the mozilla firefox
# window, copy with the mouse. Switch to the xclipboard window. Copy
# with the mouse from the xclipboard. Then paste with mouse button 2 or
# mouse button 3 into xmaple.
# ============================================
# Maple code doesn't work? Read this:
# ==========================================
# To type in a group, hold shift then press return, except
# for the last line of group, in which case use just return.
# If you copy multiple groups with the mouse, then split
# them using key F3 with the cursor placed at the front of
# a line where the split is to happen.
# Warning: These snips of code made for y'=1-x-y, y(0)=3.
# Code computes approx values for y(0.1) to y(1.0).
# 'Dots' is the list of dots for connect-the-dots graphics.
# ==========================================
# Euler. Group 1, initialize.
    f:=(x,y)->1-x-y:
    x0:=0:y0:=3:h:=0.1:Dots:= [x0,y0]:n:=10:
# Group 2, repeat n times. Euler's method
for i from 1 to n do
    Y:=y0+h*f(x0,y0);
    x0:=x0+h:y0:=Y:Dots:=Dots,[x0,y0];
od:
# Group 3, display dots and plot.
    Dots;
    plot([Dots]);
# =========================================
# Heun. Group 1, initialize.
    f:=(x,y)->1-x-y:
    x0:=0:y0:=3:h:=0.1:Dots:= [x0,y0]:n:=10:
# Group 2, repeat n times. Heun method.
for i from 1 to n do
    Y1:=y0+h*f(x0,y0);
    Y:=y0+h*(f(x0,y0)+f(x0+h,Y1))/2:
    x0:=x0+h:y0:=Y:Dots:=Dots,[x0,y0];
od:
# Group 3, display dots and plot.
    Dots;
    plot([Dots]);
# ==========================================
# RK4. Group 1, initialize.
    f:=(x,y)->1-x-y:
    x0:=0:y0:=3:h:=0.1:Dots:=[x0,y0]:n:=10:
```

\# Group 2, repeat n times. RK4 method.
for i from 1 to n do $\mathrm{k} 1:=\mathrm{h} * \mathrm{f}(\mathrm{x} 0, \mathrm{y} 0)$:
$\mathrm{k} 2:=\mathrm{h} * \mathrm{f}(\mathrm{x} 0+\mathrm{h} / 2, \mathrm{y} 0+\mathrm{k} 1 / 2)$:
$\mathrm{k} 3:=h * f(\mathrm{x} 0+\mathrm{h} / 2, \mathrm{y} 0+\mathrm{k} 2 / 2)$:
$\mathrm{k} 4:=\mathrm{h} * \mathrm{f}(\mathrm{x} 0+\mathrm{h}, \mathrm{y} 0+\mathrm{k} 3)$:
$\mathrm{Y}:=\mathrm{y} 0+(\mathrm{k} 1+2 * \mathrm{k} 2+2 * k 3+\mathrm{k} 4) / 6$:
$\mathrm{x} 0:=\mathrm{x} 0+\mathrm{h}: \mathrm{y} 0:=\mathrm{Y}: \operatorname{Dots}:=\operatorname{Dots},[\mathrm{x} 0, \mathrm{y} 0]$;
od:
\# Group 3, display some dots and plot.
Dots [1], Dots [2], Dots [n+1];
plot([Dots]);
\# Code snips for exact/error reports
\# ===120
\# Making multiple curves on one plot
\# ===
Exact: $=x->2-x+\exp (-x)$; An exact solution
plot (\{Exact (x), [Dots]\}, $x=0 . .1 / 2)$; \# plot exact and approx solutions
\# ==120
\# How to create a Dots table for the exact solution
\# ===
Exact:= x-> $2-\mathrm{x}+\exp (-\mathrm{x}): \mathrm{n}:=10$:
ExactDots:=seq([Dots[j][1], Exact(Dots[j][1])],j=1..n+1);

```
# ==========================================
# How to define and print percentage relative error:
# =========================================
    P:=unapply(evalf(100*abs(exact-approx)/abs(exact)), (exact,approx));
    ExactVal:=Exact(Dots[11][1]): # Compute exact y-value for x=1.0
    ApproxVal:=Dots[11] [2]: # Get Euler approx y-value for x=1.0
    P(ExactVal),ApproxVal); # print percent relative error
# ==========================================
# How to create a Dots table for percentage error
# ===========================================
    P:=unapply(evalf(100*abs(exact-approx)/abs(exact)), (exact,approx));
    Pdots:=seq([Dots[j][1],P(Exact(Dots[j][1]),Dots[j][2])],j=1..11);
```

\# ===12
\# Printing results and tables
\# Make tables with a pencil, it saves time.
\# ==
\# To extract and print items 1,101,201,1001 from a list:
Dots1:=Dots [1], Dots [101], Dots [201], Dots [1001];

\# Loop control
\# ===10
\# To automate the production of a Dots list,
\# enclose the desired code between 1 and 2 below.
\# 1. for k from 1 to 10 do
\# 2. od:
\#
\# Keyword "od:" is short for "end do:"
\# Use ":" to stop loop results from printing.

```
# Debug
# ==========================================
# To remove loop control and do it by hand, insert
# pound (#) signs as follows:
# 1. # for k from 1 to 10 do
# 2. # od:
# The hand-done loop is made by placing the mouse cursor
# in the group, then press return. Repeat for each loop step,
# which is }10\mathrm{ times for the loop above.
# the end
```

End of Maple Lab 3: Numerical Methods.

