Differential Equations and Linear Algebra 2250 Midterm Exam 1 Version 1 [7:30]

Midterm Exam 1 Version 1 [7:30] Tuesday, 12 February 2008

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Quadrature Equations)

(a) [25%] Solve
$$y' = \frac{1-x^2}{1+x^2}$$
.

(b) [25%] Solve
$$y' = (\sec x + \tan x)^2$$
.

(c) [25%] Solve
$$y' = \frac{\cos(\ln|x|)}{x}$$
, $y(1) = 2$.

(d) [25%] Find the position x(t) from the velocity model $\frac{d}{dt}(e^t v) = e^{-t}$ and the position model $\frac{dx}{dt} = v(t)$.

(a)
$$y = \int \frac{1-x^2}{1+x^2} dx = \int \left(-1 + \frac{2}{1+x^2}\right) dx = -x + Tan^{-1}(x) + c$$

$$D y = \int (\beta ee^2 x + 2\beta ee x tan x + tan^2 x) dx$$

$$= \int (2\beta ee^2 x - 1 + 2\beta ee x tan x) dx$$

$$= 2 tan(x) - x + 2\beta ee x + C$$

©
$$y = \int \cos u \, du$$
, $u = \ln |x|$

$$= \sin u + c = \sin(\ln |x|) + c$$

$$= \sin(\ln |x|) + 2$$

$$\begin{array}{ll}
\text{(a)} & \int \frac{d}{dt} (e^{t}v) dt = \int e^{t} dt \\
e^{t}v & = -\overline{e}^{t} + c_{1} \\
v & = -\overline{e}^{2t} + c_{1}\overline{e}^{t} \\
x' & = -\overline{e}^{2t} + c_{1}\overline{e}^{t} \\
x' & = \frac{1}{2}\overline{e}^{2t} + c_{2}\overline{e}^{t} + c_{3}
\end{array}$$

$$\begin{array}{ll}
\text{(a)} & \int \frac{d}{dt} (e^{t}v) dt = \int \overline{e}^{t} dt \\
v & = -\overline{e}^{t} + c_{1} \\
x' & = -\overline{e}^{t} + c_{1} \\
x' & = -\overline{e}^{t} + c_{2} \\
x' & = -\overline{e}^{t} + c_{3} \\
x' & = -\overline{e}^{t} + c_{3}$$

absorb - into (2

14 Tan 2 B = Dec 2 B

2. (Classification of Equations)

The differential equation y' = f(x,y) is defined to be **separable** provided f(x,y) = F(x)G(y) for some functions F and G.

(a) [40%] Check (X) the problems that can be put into separable form, but don't supply any details.

y' = y(2x+3) + (x-2)y = 2×9+39+×9-29	
$y' = 2e^{2x}e^{2y} + e^{2x+y}$	$y' + \tan y = 1$

- (b) [10%] State a calculus test which can verify that an equation y' = f(x, y) is linear.
- (c) [10%] Give an example of y' = f(x, y) which is linear but not quadrature and not separable. No details expected.
- (d) [40%] Apply a separable equation test to show that $y' = e^x + e^y$ is not separable.

(a)
$$f = (3x+1)y$$

• $f = e^{2x}(2e^{2y}+e^{y})$

• $f = 1-\tan y$

(b) $\frac{\partial f}{\partial y}$ independent $f(y) \Leftrightarrow f' = f(x,y)$ is linear.

(c) $f' + y = x$

• $f = x-y$

• $f = 1-\tan y$

(d) $f = f(x,y)$

• $f = x-y$

• $f = 1-\tan y$

• $f = 1-\tan$

3. (Solve a Separable Equation)

Given
$$yy' = \left(\frac{\sin^2 x}{\cot x} + \frac{2x^2 + 6}{3 + x}\right)(y+1)(2-y).$$

Find a non-equilibrium solution in implicit form.

To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

$$\frac{-yy'}{(y+1)(y-2)} = \sin^3 x/\cos x + 2x - 6 + \frac{24}{x+3}$$

$$\frac{-1/3}{y+1} + \frac{-2/3}{y-2} = \left(1 - \cos^2 x\right) \frac{\sin x}{\cos x} + 2x - 6 + \frac{24}{x+3}$$
Quadrature Alep

$$-\frac{1}{3}\ln|1+y|-\frac{2}{3}\ln|y-2|=\ln|\rho_{ee}x|-\frac{\sin^3x}{2}+x^2-6x+2y\ln|x+3|+C$$

Details

$$2x-6$$
 $2x^2+6$
 $2x^2+6$
 $-6x+6$
 $-6x-18$
 24

Div.alg.

 $2x^2+6$
 $x+3$
 $-2x-6+2$
 $x+3$
 $x+3$

$$\frac{-y}{(y+1)(y-2)} = \frac{A}{y+1} + \frac{B}{y-2}$$

$$-y = A(y-2) + B(y+1)$$
 clear fractions

$$y=-1: 1=-3A+0 \longrightarrow A=\frac{-1}{3}, B=\frac{-2}{3}$$

 $y=2: -2=0+3B$

Heavisides coverup also acceptable.

Use this page to start your solution. Attach extra pages as needed, then staple.

4. (Linear Equations)

- (a) [60%] Solve the linear model $10x'(t) = -110 + \frac{10}{2t+5}x(t)$, x(0) = -55. Show all integrating factor steps.
- (b) [20%] Solve the homogeneous equation $3\frac{dy}{dx} = -(2x^2)y$.
- (c) [20%] Solve $\frac{dy}{dx} = 5y + 2$ using the superposition principle $y = y_h + y_p$. Expected are answers for y_h and y_p .

answers for
$$y_h$$
 and y_p .

(A) $x' - \frac{1}{2t+5}x = -11$
 $W = e - \frac{1}{2} \ln |2t+5|$
 $W = e + \frac{1}{2} \ln |2t+5|$

Use this page to start your solution. Attach extra pages as needed, then staple.

- 5. (Stability)
 - (a) [50%] Draw a phase line diagram for the differential equation

$$\frac{dx}{dt} = \ln(1+x^2) \left(1 - \sqrt[4]{|2x|}\right)^3 (1+x)(9-x^2)(x^2-1)^3.$$

Expected in the phase line diagram are equilibrium points and signs of dx/dt.

7 equilibria

(b) [50%] Draw a phase diagram with at least 10 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, neither spout nor funnel [a node], stable, unstable. A direction field is not expected nor required.

