Introduction to Linear Algebra 2270-2 Sample Midterm Exam 2 Spring 2007 Exam Date: 28 March

Instructions. This exam is designed for 50 minutes. Calculators, books, notes and computers are not allowed.

1. (Matrices, determinants and independence) Do two parts.

(a) Assume that $\det(EA) = \det(E) \det(A)$ holds for an elementary swap, multiply or combination matrix E and any square matrix A. Let $B = E_3 E_2 E_1 C$ where $\det(C) = 4$ and E_1 , E_2 , E_3 represent combo(1,2,-1), mult(3,-2), swap(1,3) respectively. Find $\det(B^{-1})$.

(b) Prove that the pivot columns of A form a basis for im(A).

(c) Suppose A and B are both $n \times m$ of rank m and $\operatorname{rref}(A) = \operatorname{rref}(B)$. Prove or give a counterexample: the column spaces of A and B are identical.

(d) Let T be the linear transformation on \mathcal{R}^3 defined by mapping the columns of the identity respectively into three independent vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 . Define $\mathbf{u}_1 = \mathbf{v}_1 + 2\mathbf{v}_3$, $\mathbf{u}_2 = \mathbf{v}_1 + 3\mathbf{v}_2$, $\mathbf{u}_3 = \mathbf{v}_2 + 4\mathbf{v}_3$. Verify that $\mathcal{B} = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ is a basis for \mathcal{R}^3 and report the \mathcal{B} -matrix of T (Otto Bretscher page 139).

Name _____

2. (Kernel and similarity) Do two parts.

(a) Illustrate the relation $\operatorname{rref}(A) = E_k \cdots E_2 E_1 A$ by a frame sequence and explicit elementary matrices for the matrix

$$A = \left(\begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 2 & 0 \end{array} \right).$$

- (b) Prove or disprove: $\operatorname{ker}(\operatorname{rref}(BA)) = \operatorname{ker}(A)$, for all invertible matrices B.
- (c) Find a matrix A of size 3×3 that is not similar to a diagonal matrix. Verify assertions.
- (d) Let

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Prove or disprove: A is similar to the upper triangular matrix T.

3. (Independence and bases) Do two parts.

(a) Let A be a 12×15 matrix. Suppose that, for any possible independent set $\mathbf{v}_1, \ldots, \mathbf{v}_k$, the set $A\mathbf{v}_1, \ldots, A\mathbf{v}_k$ is independent. Prove or give a counterexample: $\mathbf{ker}(A) = \{\mathbf{0}\}$.

(b) Let V be the vector space of all polynomials $c_0 + c_1 x + c_2 x^2$ under function addition and scalar multiplication. Prove that 1 - x, 2x, $(x - 1)^2$ form a basis of V.

4. (Linear transformations) Do two parts.

(a) Let L be a line through the origin in \mathcal{R}^3 with unit direction **u**. Let T be a reflection through L. Define T precisely. Display its representation matrix A, i.e., $T(\mathbf{x}) = A\mathbf{x}$.

(b) Let T be a linear transformation from \mathcal{R}^n into \mathcal{R}^m . Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the columns of I and let A be the matrix whose columns are $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)$. Prove that $T(\mathbf{x}) = A\mathbf{x}$.

5. (Vector spaces)

(a) Show that the set of all 4×3 matrices A which have exactly one element equal to 1, and all other elements zero, form a basis for the vector space of all 4×3 matrices.

(b) Let
$$S = \{ \begin{pmatrix} a & b \\ -a & 2b \end{pmatrix} : a, b \text{ real} \}$$
. Find a basis for S .

(c) Let V be the vector space of all functions defined on the real line, using the usual definitions of function addition and scalar multiplication. Let S be the set of all polynomials of degree less than 5 (e.g., $x^4 \in V$ but $x^5 \notin V$) that have zero constant term. Prove that S is a subspace of V.