Introduction to Linear Algebra 2270-2 Sample Midterm Exam 2 Spring 2007 Exam Date: 28 March

Instructions. This exam is designed for 50 minutes. Calculators, books, notes and computers are not allowed.

1. (Matrices, determinants and independence) Do two parts.
(a) Assume that $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$ holds for an elementary swap, multiply or combination matrix E and any square matrix A. Let $B=E_{3} E_{2} E_{1} C$ where $\operatorname{det}(C)=4$ and E_{1}, E_{2}, E_{3} represent combo $(1,2,-1), \operatorname{mult}(3,-2), \operatorname{swap}(1,3)$ respectively. Find $\operatorname{det}\left(B^{-1}\right)$.
(b) Prove that the pivot columns of A form a basis for $\operatorname{im}(A)$.
(c) Suppose A and B are both $n \times m$ of $\operatorname{rank} m$ and $\operatorname{rref}(A)=\operatorname{rref}(B)$. Prove or give a counterexample: the column spaces of A and B are identical.
(d) Let T be the linear transformation on \mathcal{R}^{3} defined by mapping the columns of the identity respectively into three independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Define $\mathbf{u}_{1}=\mathbf{v}_{1}+2 \mathbf{v}_{3}, \mathbf{u}_{2}=\mathbf{v}_{1}+3 \mathbf{v}_{2}, \mathbf{u}_{3}=\mathbf{v}_{2}+4 \mathbf{v}_{3}$. Verify that $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for \mathcal{R}^{3} and report the \mathcal{B}-matrix of T (Otto Bretscher page 139).

Start your solution on this page. Please staple together any additional pages for this problem.
2. (Kernel and similarity) Do two parts.
(a) Illustrate the relation $\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A$ by a frame sequence and explicit elementary matrices for the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 0 \\
2 & 2 & 0
\end{array}\right)
$$

(b) Prove or disprove: $\operatorname{ker}(\operatorname{rref}(B A))=\operatorname{ker}(A)$, for all invertible matrices B.
(c) Find a matrix A of size 3×3 that is not similar to a diagonal matrix. Verify assertions.
(d) Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Prove or disprove: A is similar to the upper triangular matrix T.
3. (Independence and bases) Do two parts.
(a) Let A be a 12×15 matrix. Suppose that, for any possible independent set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, the set $A \mathbf{v}_{1}$, $\ldots, A \mathbf{v}_{k}$ is independent. Prove or give a counterexample: $\boldsymbol{\operatorname { k e r }}(A)=\{\mathbf{0}\}$.
(b) Let V be the vector space of all polynomials $c_{0}+c_{1} x+c_{2} x^{2}$ under function addition and scalar multiplication. Prove that $1-x, 2 x,(x-1)^{2}$ form a basis of V.

Start your solution on this page. Please staple together any additional pages for this problem.

4. (Linear transformations) Do two parts.

(a) Let L be a line through the origin in \mathcal{R}^{3} with unit direction \mathbf{u}. Let T be a reflection through L. Define T precisely. Display its representation matrix A, i.e., $T(\mathbf{x})=A \mathbf{x}$.
(b) Let T be a linear transformation from \mathcal{R}^{n} into \mathcal{R}^{m}. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the columns of I and let A be the matrix whose columns are $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$. Prove that $T(\mathbf{x})=A \mathbf{x}$.
5. (Vector spaces)
(a) Show that the set of all 4×3 matrices A which have exactly one element equal to 1 , and all other elements zero, form a basis for the vector space of all 4×3 matrices.
(b) Let $S=\left\{\left(\begin{array}{rr}a & b \\ -a & 2 b\end{array}\right): a, b\right.$ real $\}$. Find a basis for S.
(c) Let V be the vector space of all functions defined on the real line, using the usual definitions of function addition and scalar multiplication. Let S be the set of all polynomials of degree less than 5 (e.g., $x^{4} \in V$ but $x^{5} \notin V$) that have zero constant term. Prove that S is a subspace of V.

