
Differential Equations and Linear Algebra 2250
Exam 3 Practice Problems

28 Nov 2010, Part II: Problems 3,4,5

3. (Chapter 5)

(3a) [70%] Find the steady-state periodic solution for the forced spring-mass system x′′ + 2x′ + 2x = 5 sin(t).

Answer:

x = sin t − 2 cos t

(3b) [70%] Write the general solution of the forced spring-mass system x′′ + 4x = 5 sin(t) as the sum of two
harmonic oscillations of different frequencies.

Answer:

xp = 5
3 sin t, xh = c1 cos 2t + c2 sin 2t, x = xh + xp. The frequencies are 1 and 2.

(3c) [70%] Determine without solving the unforced mass-dashpot-spring mechanical system 4x′′(t)+10x′(t)+
3x(t) = 0 it’s classification of over-damped, critically damped, or under-damped.

Answer:

The discriminant for 4r2 + 10r + 3 = 0 is D = 102 − 4(4)(3) = 52. It’s over-damped.

(3d) [40%] Find by variation of parameters an integral formula for a particular solution xp of the equation

x′′ + 4x′ + 20x = et2 ln(t2 + 1). To save time, don’t try to evaluate integrals (it’s impossible).

Answer:

xp(t) = x1(t)
∫ t
0 k1(u)f(u)du + x2(t)

∫ t
0 k2(u)f(u)du, f(t) = et2 ln(t2 + 1), x1(u) = e−2u cos(4u),

x2(u) = 1
2e−2u sin(4u), W (u) = 2e−4u, k1(u) = −x2(u)/W (u) = −0.5e2u sin(4u), k2(u) =

x1(u)/W (u) = 0.5e2u cos(4u). On paper is expected the equation

yp = e−2t cos(4t)

(∫ t

0
−

1

2
e2u sin(4u)eu2

ln(u2 + 1)du

)

+e−2t sin(4t)

(∫ t

0

1

2
e2u cos(4u)eu2

ln(u2 + 1)du

)

(3e) [30%] Determine the practical resonance frequency ω for the electric current equation

2I ′′ + 7I ′ + 50I = 100ω cos(ωt).

Answer:

ω = 1/
√

LC = 1/
√

2/50 =
√

25 = 5.

(3f) [30%] Determine the practical resonance frequency ω for the mass-dashpot-spring mechanical system

2x′′(t) + 7x′(t) + 50x(t) = 100 cos(ωt).

Answer:

ω =
√

k
m

− c2

2m2 =
√

25 − 49
8 = 1

4

√
302.

(3g) [30%] Find the steady-state periodic solution for the forced spring-mass system x′′+2x′+10x = 5cos(t).



Answer:

x(t) = (2/17) sin(t) + (9/17) cos(t) by undetermined coefficients or Laplace theory.

4. (Chapter 5)

(4a) [70%] Find a particular solution yp(x) and the homogeneous solution yh(x) for
d4y

dx4
−

d2y

dx2
= 12x2.

Answer:

Use undetermined coefficients to solve for yp = −x4 − 12x2. The homogeneous solution is yh =
c1 + c2x + c3e

x + c4e
−x.

(4b) [30%] Find the shortest trial solution in the method of undetermined coefficients for the differential
equation y′′+y = 3cos x. To save time, do not evaluate the undetermined coefficients and do not find yp(x)!

Answer:

The trial solution is a linear combination of the atoms x cos x, x sin x. Undetermined coefficient rules
were applied to the atoms of f(x) = 3 cos x, divided into Group 1: cos x and Group 2: sin x. There
was a conflict with the atoms cos x, sin x of the homogeneous equation, resolved by multiplication of
each of the two groups by x.

(4c) [50%] Assume f(x) is a linear combination of atoms computed by Euler’s theorem from the characteristic
equation is r2(r + 1)(r2 + 9) = 0. Find the shortest trial solution in the method of undetermined coefficients
for the differential equation y′′′ − y′ = f(x). To save time, do not evaluate the undetermined coefficients and
do not find yp(x)!

Answer:

f(x) is a linear combination of atoms divided into Group 1: 1, x, Group 2: e−x, Group 3: cos 3x,
Group 4: sin 3x. The homogeneous equation y′′′ − y′ = 0 has atoms 1, ex, e−x. The trial solution is a
linear combination of the atoms x, x2, xe−x, cos 3x, sin 3x. Undetermined coefficient rules were
used to resolve the conflicts in Group 1 and Group 2. The other two groups were unchanged.

(4d) [50%] Find the shortest trial solution in the method of undetermined coefficients for the differential
equation y′′′ − y′ = x + ex. To save time, do not evaluate the undetermined coefficients and do not find
yp(x)!

Answer:

Characteristic equation r3 − r = 0 has roots 0, 1,−1. Function f(x) = x + ex has 3 atoms divided
into Group 1: 1, x, Group 2: ex. The trial solution is a linear combination of the atoms x, x2, xex.
Undetermined coefficient rules were used to resolve the conflicts in Group 1 and Group 2.

(4e) [25%] The general solution of a certain linear homogeneous differential equation with constant coefficients
is

y = c1e
−2x + c2xe−2x + c3 + c4x + c5x

2 + c6e
x.

Find the factored form of the characteristic polynomial.

Answer:

The atoms are constructed from roots −2,−2, 0, 0, 0, 1, listed according to multiplicity. Then (r +2)2,
r3 and (r−1) are factors. The characteristic polynomial is a(r+2)2r3(r−1) for some nonzero constant
a.



(4f) [30%] Find five independent solutions of a homogeneous linear constant coefficient differential equation
whose sixth order characteristic equation has roots 1, 1, 1, 0, 1 + i, 1 − i.

Answer:

According to Euler’s theorem, a basis is the list of atoms ex, xex, x2ex, ex cos x, ex sinx. Choose five
of them. Cite a theorem: Distinct atoms are independent.

(4g) [25%] Let f(x) = 4x5ex. Find a constant-coefficient linear homogeneous differential equation of smallest
order which has f(x) as a solution.

Answer:

The atom x5ex is constructed from roots 1, 1, 1, 1, 1, 1, listed according to multiplicity. Then the
characteristic polynomial must include factor (r−1)6. The characteristic polynomial must be a constant
multiple of (r − 1)6 = r6 − 6r5 + 15r4 − 20r3 + 15r2 − 6r + 1. This characteristic equation belongs
to the differential equation y(6) − 6y(5) + 15y(4) − 20y(3) + 15y′′ − 6y′ + y = 0.

5. (Chapter 6)

(5a) [80%] Define A =







4 2 −2
0 3 1
0 1 3






. Find A3







2
0
2






without using matrix multiply.

Answer:

First find the eigenpairs of A, (λi,vi). They are λ1 = λ2 = 4, λ3 = 2,

v1 =







1
0
0






, v2 =







0
1
1






, v3 =







2
−1

1






.

Vector v ≡







2
0
2






= v2 + v3, where v1, v2, v3 are the eigenvectors in Fourier’s model

A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3.

Then A3v = A((0)v1 + (1)v2 + (1)v3) = c1λ
3
1v1 + c2λ

3
2v2 + c3λ

3
3v3 = 43v2 + 23v3 =







16
56
72






.

(5b) [40%] Given A =







1 1 −1
0 0 1
0 1 0






, which has eigenvalues 1, 1,−1, assume there exists an invertible matrix

P and a diagonal matrix D such that AP = PD. Circle those vectors from the list below which are possible
columns of P .







1
−1

2






,







1
1
1






,







1
1

−1






.

Answer:

Matrix P must contain eigenvectors of P corresponding to eigenvalues 1, 1, −1, in some order. For
each given vector v, multiply Av and see if it is λv for some λ. The first fails. The second works for
λ = 1. The third fails.



(5c) [40%] Find all eigenpairs for the matrix A =

(

3 −2
4 −3

)

. Display the matrices P , D in the diagonal-

ization equation AP = PD. Finally, display Fourier’s model.

Answer:

Eigenpairs are

(

−1,

(

1
2

))

,

(

1,

(

1
1

))

. The matrices P , D are defined by

P =

(

1 1
2 1

)

, D =

(

−1 0
0 1

)

.

Fourier’s model is

A

(

c1

(

1
2

)

+ c2

(

1
1

))

= c1(−1)

(

1
2

)

+ c2(1)

(

1
1

)

.

(5d) [50%] Find the remaining eigenpairs of

E =







6 2 −2
0 5 1
0 1 5







provided we already know one eigenpair





6,







0
1
1












.

Answer:

Eigenvalues are 4, 6, 6 with corresponding eigenvectors







2
−1

1






,







1
0
0






,







0
1
1






.

(5e) [40%] Suppose a 3 × 3 matrix A has three eigenpairs






3,







1
2
0












,






3,







1
1
0












,






0,







0
0
1












.

Find the nine entries of A from the eigenanalysis equation AP = PD.

Answer:

Define P =







1 1 0
2 1 0
0 0 1






, D =







3 0 0
0 3 0
0 0 0






.

Solution 1. Then AP = PD, which implies A = PDP−1. Find the inverse of A from the augmented

matrix of P and I, P−1 =







−1 1 0
2 −1 0
0 0 1






. Multiply

A =







1 1 0
2 1 0
0 0 1













3 0 0
0 3 0
0 0 0













−1 1 0
2 −1 0
0 0 1






=







3 0 0
0 3 0
0 0 0






.



Solution 2. Let the eigenpairs be labeled as (λi,vi), i = 1, 2, 3. Replace v1, v2 by eigenvectors






1
0
0






,







0
1
0






, which are linear combinations of the given eigenvectors. Then AP = PD becomes

AI = ID = D, so A = D.

(5f) [25%] Assume the vector general solution x(t) of the linear differential system x′ = Ax is given by

x(t) = c1







3
1
1






+ c2e

2t







−1
2
0






+ c3e

2t







0
0
1






.

Display Fourier’s model for the 3 × 3 matrix A.

Answer:

A






c1







3
1
1






+ c2







−1
2
0






+ c3







0
0
1












= 0c1







3
1
1






+ 2c2







−1
2
0






+ 2c3







0
0
1






.

(5g) [30%] Find the eigenvalues of the matrix A =











−2 7 1 27
−1 6 −3 62

0 0 3 2
0 0 −1 0











. To save time, do not find eigen-

vectors!

Answer:

Expand by cofactors along column 1. The eigenvalues are −1, 1, 2, 5.

(5h) [30%] Assume A is 2 × 2 and Fourier’s model holds:

A

(

c1

(

1
1

)

+ c2

(

1
−1

))

= 2c2

(

1
−1

)

.

Find A.

Answer:

AP = PD implies A = PDP−1 =

(

1 1
1 −1

)(

0 0
0 2

)(

.5 .5

.5 −.5

)

=

(

1 −1
−1 1

)

.

(5i) [40%] Let A =







3 0 −1
0 3 0
0 0 3






. Circle the possible eigenvectors of A in the list below.







−4
2
0






,







1
0
0






,







0
0
1






.

Answer:

Fourier’s model does not hold [A is not diagonalizable] because there are only two eigenvectors







1
0
0







and







0
1
0






for eigenvalue λ = 3. The first is a linear combination of these eigenvectors, hence itself



an eigenvector. The second is one already reported, The third is not an eigenvector. The problem
should be solved by testing the equation Av = 3v for each of the 3 vectors v in the list, not by doing
the eigenanalysis of A.

(5j) [40%] Consider the 3 × 3 matrix

E =







4 2 −2
0 3 1
0 1 3






.

Show that matrix E has a Fourier model: [original had a typo]

E






c1







1
0
0






+ c2







0
1
1






+ c3







2
−1

1












= 4c1







1
0
0






+ 4c2







0
1
1






+ 2c3







2
−1

1






.

Answer:

Do the eigenanalysis of A. Alternate: verify that the eigenpairs extracted from Fourier’s model actually
work, which involves 3 matrix multiplies.

(5k) [20%] Let P =

(

3 1
1 −1

)

, D =

(

3 0
0 −2

)

and define A by AP = PD. Display the eigenpairs of A.

Answer:
(

3,

(

3
1

))

,

(

−2,

(

1
−1

))

(5m) [20%] Assume the vector general solution ~u(t) of the 2 × 2 linear differential system ~u′ = C~u is given
by

~u(t) = c1e
2t

(

1
−1

)

+ c2e
2t

(

2
1

)

.

Find the matrix C.

Answer:

The eigenvalues come from the exponents in the exponentials, 2 and 2. The eigenpairs are

(

2,

(

1
−1

))

,

(

2,

(

2
1

))

. Then P =

(

1 2
−1 1

)

, D =

(

2 0
0 2

)

. Solve CP = PD to find C =

(

2 0
0 2

)

. The

usual eigenpairs for C are the columns of the identity. But the eigenvalues are equal, therefore any
linear combination of the two eigenvectors is also an eigenvector. This justifies the correctness of the
strange eigenpairs given in the problem.


