\qquad

Partial Differential Equations 3150
 Sample Midterm Exam 1
 Exam Date: Tuesday, 27 October 2009

Instructions: This exam is timed for 50 minutes. You will be given double time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Vibration of a Finite String)

Some normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the equation

$$
u(x, t)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) .
$$

(a) [25\%] Give an example of a finite linear combination of normal modes.
(b) [25\%] Write a mathematical argument, using the superposition principle, showing that the example given in (a) is a solution of $u_{t t}=c^{2} u_{x x}$.
(c) [50\%] Solve the finite string vibration problem on $0 \leq x \leq 1, t>0$,

$$
\begin{array}{ll}
u_{t t} & =c^{2} u_{x x}, \\
u(0, t) & =0, \\
u(1, t) & =0, \\
u(x, 0) & =2 \sin (\pi x)-3 \sin (5 \pi x), \\
u_{t}(x, 0) & =0 .
\end{array}
$$

Name.

2. (Periodic Functions)

(a) [25\%] Find the period of $f(x)=\sin 2 x \cos 2 x$.
(b) [25\%] Give an example of a piecewise continuous function on $0 \leq x \leq 2$ that has a discontinuity at $x=1$.
(c) $[25 \%]$ Is $f(x)=\cos (2 x+3)$ an even periodic function?
(d) $[25 \%]$ Is $f(x)=\sin (\pi x / 5)$ an odd periodic function?

Name.

3. (Fourier Series)

Let $f(x)=1$ on the interval $0<x<2 \pi, f(x)=-1$ on $-2 \pi<x<0, f(x)=0$ for $x=0,2 \pi,-2 \pi$. Let $g(x)$ be the 4π-periodic extension of f to the whole real line.
(a) $[25 \%]$ Is $g(x)$ even or odd?
(b) $[25 \%]$ Display the formulas for the Fourier coefficients of f.
(c) $[25 \%]$ Compute the Fourier coefficient for the term $\sin (5 x)$.
(d) [25\%] Are there any values of x such that $g(x)$ does not equal the Fourier series of f ?

Name.

4. (Cosine and Sine Series)

Find the first three terms in the cosine series expansion of the cosine wave $g(x)$, formed as the even periodic extension of the base function $\cos x+2 \cos 4 x$ on $0<x<\pi$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

5. (Convergence of Fourier Series)

(a) $[25 \%]$ Display Dirichlet's kernel formula.
(b) $[25 \%]$ State the Fourier Convergence Theorem for piecewise smooth functions.
(c) $[25 \%]$ Fourier convergence may not be uniform, and the commonly referenced term to describe this problem is Gibb's phenomenon. Explain what it is, by example.
(d) [25\%] State Parseval's identity for complex Fourier series.

