Introduction to Linear Algebra 2270-3
Midterm Exam 2 Fall 2008
Draft of 8 November 2008
Take-home problems due November 17
First collection 18 Nov, Second collection 21 Nov.

1. (Matrices, bases and independence)

(a) Prove that the column positions of leading ones in $\operatorname{rref}(A)$ identify columns of A which form a basis for $\operatorname{im}(A)$.
(b) Find a basis for the image of any invertible $n \times n$ matrix.
(c) Let T be the linear transformation on \mathcal{R}^{3} defined by mapping the columns of the identity respectively into three independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Define $\mathbf{u}_{1}=\mathbf{v}_{1}+2 \mathbf{v}_{3}, \mathbf{u}_{2}=\mathbf{v}_{1}+3 \mathbf{v}_{2}, \mathbf{u}_{3}=\mathbf{v}_{2}+4 \mathbf{v}_{3}$. Verify that $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for \mathcal{R}^{3} and report the \mathcal{B}-matrix of T (Otto Bretscher 3E, page 142).

Please staple this page to the front of your submitted exam problem 1.

Introduction to Linear Algebra 2270-3
 Midterm Exam 2 Fall 2008
 Take-Home Problems Due 17 November

2. (Kernel and similarity)
(a) Prove or disprove: $A B=I$ with A, B possibly non-square implies $\operatorname{ker}(A)=\{\mathbf{0}\}$.
(b) Prove or disprove: $\operatorname{ker}(\operatorname{rref}(B A))=\operatorname{ker}(A)$, for all invertible matrices B.
(c) Prove or disprove: $\operatorname{im}(\operatorname{rref}(B A))=\operatorname{im}(A)$, for all invertible matrices B.
(d) Prove or disprove: Similar matrices A and B satisfy nullity $(A)=\operatorname{nullity}(B)$.

Introduction to Linear Algebra 2270-3

Midterm Exam 2 Fall 2008
Take-Home Problems Due 17 November
3. (Independence and bases)
(a) Let A be an $n \times m$ matrix. Report a condition on A such that all possible finite sets of independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are mapped by A into independent vectors $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{k}$. Prove that any matrix A satisfying the condition maps independent sets into independent sets.
(b) Let V be the vector space of all polynomials $c_{0}+c_{1} x+c_{2} x^{2}$ under function addition and scalar multiplication. Prove that $1-x, 2 x+1,(x-1)^{2}$ form a basis of V.

Introduction to Linear Algebra 2270-3
 Midterm Exam 2 Fall 2008
 Take-Home Problems Due 17 November

4. (Linear transformations)

(a) Let L be a line through the origin in \mathcal{R}^{3} with unit direction \mathbf{u}. Let T be a reflection through L. Define T precisely. Compute and display its representation matrix A, i.e., the unique matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
(b) Let T be a linear transformation from \mathcal{R}^{n} into \mathcal{R}^{m}. Given a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \mathcal{R}^{n}, let A be the matrix whose columns are $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$. Prove that $T(\mathbf{x})=A \mathbf{x}$.
(c) Consider the equations

$$
\begin{aligned}
I & =\frac{1}{3}(R+G+B) \\
L & =R-G \\
S & =B-\frac{1}{2}(R+G) .
\end{aligned}
$$

On page 94 of Otto Bretscher 3E, these equations are discussed as representing the intensity I, long-wave signal L and short-wave signal S in terms of the amounts R, G, B of red, green and blue light. Submit all parts of problem 86, page 94.
In the last part 86 d , let T be the eye-brain transformation with matrix M and let T_{1} be the transformation in 86 a , having matrix P. Otto wants $T_{1} T$ to be the sunglass-eye-brain composite transformation of 86 c . This explains why 86 c and 86 d are different questions. A class discussion will help to clarify the Bretscher statement of the problem.

Please staple this page to the front of your submitted exam problem 4.

Introduction to Linear Algebra 2270-3
 Midterm Exam 2 Fall 2008
 Take-Home Problems Due 17 November

5. (Vector spaces)

(a) Show that the set of all 5×4 matrices A which have exactly one element equal to 1 , and all other elements zero, form a basis for the vector space of all 5×4 matrices.
(b) Let W be the set of all functions defined on the real line, using the usual definitions of function addition and scalar multiplication. Let V be the set of all polynomials spanned by $1, x, x^{2}, x^{3}, x^{4}$. Assume W is known to be a vector space. Prove that V is a subspace of W.

