
Name 2250 Midterm 3 Sample [7:30, F2008]

Applied Differential Equations 2250
Sample Final Exam Chapters 8, 9 and 10

Exam date: Monday, 15 Dec, 2008
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or
books. No answer check is expected. Details count 75%. The answer counts 25%.
The sample exam has extra problems to show different problem types. On exam
day, the problems will be shortened to fit into the 120-minute final exam time.

1. (ch8) Complete enough of the following to add to 100%.

(8a) [100%] Find the fundamental matrix eAt and report the solution u = eAtu(0) for the initial value
problem

u′(t) =

(
2 1
1 2

)
u(t), u(0) =

(
3
−2

)
.

(8b) [100%] Solve for the general solution u = uh + up, finding the particular solution up by variation
of parameters

up(t) = eAt
∫ t

0
e−AuF(u)du,

for the special 2× 2 system

u′(t) =

(
1 0
0 2

)
u(t) +

(
0
3

)
.

(8c) [50%] Find eAt by the Laplace resolvent method L(eAt) = (sI −A)−1 for the 2× 2 system

u′(t) =

(
2 1
1 2

)
u(t)

(8d) [50%] Find eAt by Putzer’s formula

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

for the 2× 2 system

u′(t) =

(
2 1
1 2

)
u(t).

Use this page to start your solution. Attach extra pages as needed, then staple.
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2. (ch9) Complete enough of the following to add to 100%.

(9a) [50%] Determine whether the equilibrium u = 0 is stable or unstable. Then classify the equilibrium
point as a saddle, center, spiral or node.

(1) u′ =

(
1 2
0 3

)
u

(2) u′ =

(
1 2
0 −3

)
u

(3) u′ =

(
−1 2
−2 −1

)
u

(4) u′ =

(
0 2
−2 0

)
u

Answers: unstable node, unstable saddle, stable spiral, stable center.

(9b) [50%] Find the equilibrium points of the nonlinear system and determine, via the linearized system,
the stability of each.

x′ = xy − 2,
y′ = x− 2y.

Answer: (2, 1) and (−2,−1) are the equilibria. Stability is determined by the eigenvalues of the lin-
earization

u′ =

(
y x
1 −2

)
u

at each equilibria. Then (2, 1) is an unstable saddle and (−2,−1) is a stable spiral.

(9c) [50%] Identify the predator and the prey variables in the predator-prey system. Find the equilibrium
points and identify the unique equilibrium which corresponds to coexistence with periodic populations
oscillating about the two carrying capacities.

x′ = 0.005x(40− y),
y′ = 0.01y(−50 + x).

Answer: Because removal of the interaction terms (those containing xy) gives a growth equation x′ =
0.2x and a decay equation y′ = −0.5y, then x is the prey and y is the predator. The equilibria are (0, 0)
and (50, 40). The carrying capacities x = 50, y = 40 are from the second equilibrium, which which
corresponds to coexistence of the predator and prey.

Use this page to start your solution. Attach extra pages as needed, then staple.
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3. (ch10) Complete enough of the following to add to 100%. These are sample midterm 3 problems, plus
some new problem types added from 10.4, 10.5. Delta functions appear only in the dailies, not on exams.

It is assumed that you have memorized the basic 4-item Laplace integral table and know the 6 basic
rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you
don’t know a table entry, then leave the expression unevaluated for partial credit.

(4a) [20%] Apply Laplace’s method to solve the system. Find a 2×2 system for L(x), L(y) [10%]. Solve
it for L(x), L(y) [10%]. Find formulas for x(t), y(t) [10%].

x′ = 3y,
y′ = 2x− y,
x(0) = 0, y(0) = 1.

Answer: x (t) = −3/5 e−3 t + 3/5 e2 t, y (t) = 3/5 e−3 t + 2/5 e2 t

(4a) [20%] Apply Laplace’s resolvent method L(u) = (sI − A)−1u(0) to solve the system u′ = Au,
u(0) = u0. Find explicit formulas for the components x(t), y(t) of the 2-vector u(t).

x′(t) = 3x(t) − y(t),
y′(t) = x(t) + y(t),
x(0) = 0,
y(0) = 2.

Maple answer check:
with(LinearAlgebra): A:=Matrix([[3,-1],[1,1]]);u0:=Vector([0,2]);
Lu:=(s*IdentityMatrix(2)-A)^(-1).u0; map(inttrans[invlaplace],Lu,s,t);

Answer: x(t) = −2 te2 t, y(t) = −2 (t− 1) e2 t

(4b) [20%] Ch10(b): Find f(t) by partial fraction methods, given

L(f(t)) =
8s3 + 30s2 + 32s+ 40

(s+ 2)2(s2 + 4)
.

(4c) [20%] Ch10(c): Solve for f(t), given

L(f(t)) =
d

ds

(
L
(
t2e3t

)∣∣∣
s→(s+3)

)
.

(4d) [20%] Solve for f(t), given

L(f(t)) =
(
s+ 1
s+ 2

)2 1
(s+ 2)2

(5a) [20%] Solve by Laplace’s method for the solution x(t):

x′′(t) + 3x′(t) = 9e−3t, x(0) = x′(0) = 0.

(5b) [20%] Apply Laplace’s method to find a formula for L(x(t)). Do not solve for x(t)! Document
steps by reference to tables and rules.

d4x

dt4
+ 4

d2x

dt2
= et(5t+ 4et + 3 sin 3t), x(0) = x′(0) = x′′(0) = 0, x′′′(0) = −1.

(5c) [20%] Find L(f(t)), given f(t) = sinh(2t)
sin(t)
t

.

(5d) [20%] Find L(f(t)), given f(t) = u(t− π)
sin(t)
t

, where u is the unit step function.

(5e) [20%] Fill in the blank spaces in the Laplace table:



f(t) t3 t cos t t2e2t

L(f(t))
6

s4

1

s + 2

s + 1

s2 + 2s + 5

(5f) [30%] Solve for x(t), given

L(x(t)) =
d

ds

(
L(e2t sin 2t)

)
+

s+ 1
(s+ 2)2

+
2 + s

s2 + 5s
+ L(t+ sin t)|s→(s−2) .

(5g) [20%] Find f(t) by partial fraction methods, given

L(f(t)) =
8s2 − 24

(s− 1)(s+ 3)(s+ 1)2
.

(5h) [30%] Solve for f(t) using the convolution theorem L(f1(t))L(f2(t)) = L
(∫ t

0 f1(u)f2(t− u)du
)
:

L(f(t)) =
2

(s− 1)(s2 + 4)
.

Answer:
2
5
et − 1

5
sin 2t− 2

5
cos 2t.

(5i) [40%] Let f(t) equal the pulse defined by t on 1 ≤ t < 2 and zero elsewhere. Find L(f(t)).

Answer: Write f(t) = t(u(t − 1) − u(t − 2)) where u is the unit step. Then apply the second shifting
theorem L(u(t− a)g(t− a)) = e−asL(g(t)).

(5j) [40%] Let f(t) equal the half-wave rectification of sin t, defined by f(t) = sin t on 0 ≤ t ≤ π, f(t) = 0
on π < t ≤ 2π, with f(t) periodic of period 2π. Find L(f(t)).

Answer: Use the periodic function formula L(f(t)) =
∫ T
0 f(t)e−stdt/(1 − e−sT ) with period T = 2π to

obtain L(f) = 1/((s2 + 1)(1− e−πs)).

Use this page to start your solution. Attach extra pages as needed, then staple.


