Name.

\qquad

Differential Equations 2280
 Sample Midterm Exam 2
 Thursday, 30 March 2006

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (ch3)

(a) Using the recipe for higher order constant-coefficient differential equations, write out the general solutions:

1. [25\%] $y^{\prime \prime}+y^{\prime}+y=0$,
2. $[25 \%] \quad y^{i v}+4 y^{\prime \prime}=0$,
3. [25\%] Char. eq. $\left(r^{2}-3\right)^{2}\left(r^{2}+16\right)^{3}=0$.
(b) Given $4 x^{\prime \prime}(t)+4 x^{\prime}(t)+x(t)=0$, which represents a damped spring-mass system with $m=4, c=4, k=1$, solve the differential equation [15\%] and classify the answer as over-damped, critically damped or under-damped [5\%]. Illustrate in a physical model drawing the meaning of constants $m, c, k[5 \%]$.

Notes on Problem 1.

Part (a)
1: $r^{2}+r+1=0, y=c_{1} y_{1}+c_{2} y_{2}, y_{1}=e^{-x / 2} \cos (\sqrt{3} x / 2), y_{2}=e^{-x / 2} \sin (\sqrt{3} x / 2)$.
2: $r^{i v}+4 r^{2}=0$, roots $r=0,0,2 i,-2 i$. Then $y=\left(c_{1}+c_{2} x\right) e^{0 x}+c_{3} \cos 2 x+c_{4} \sin 2 x$.
3: Write as $(r-a)^{2}(r+a)^{2}\left(r^{2}+16\right)^{3}=0$ where $a=\sqrt{3}$. Then $y=u_{1} e^{a x}+u_{2} e^{-a x}+$ $u_{3} \cos 4 x+u_{5} \sin 3 x$. The polynomials are $u_{1}=c_{1}+c_{2} x, u_{2}=c_{3}+c_{4} x, u_{3}=c_{5}+c_{6} x+c_{7} x^{2}$, $u_{4}=c_{8}+c_{9} x+c_{10} x^{2}$.
Part (b)
Use $4 r^{2}+4 r+1=0$ and the quadratic formula to obtain roots $r=-1 / 2,-1 / 2$. Case 2 of the recipe gives $y=\left(c_{1}+c_{2} t\right) e^{-t / 2}$. This is critically damped. The illustration shows a spring, dampener and mass with labels k, c, m, x and the equilibrium position of the mass.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

2. (ch3)

Determine for $y^{i v}-9 y^{\prime \prime}=x e^{3 x}+x^{3}+e^{-3 x}+\sin x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Notes on Problem 2.

The homogeneous solution is $y_{h}=c_{1}+c_{2} x+c_{3} e^{3 x}+c_{4} e^{-3 x}$, because the characteristic polynomial has roots $0,0,3,-3$.
1 An initial trial solution y is constructed for atoms $1, x, e^{3 x}, e^{-3 x}, \cos x, \sin x$ giving

$$
\begin{aligned}
& y=y_{1}+y_{2}+y_{3}+y_{4}, \\
& y_{1}=\left(d_{1}+d_{2} x\right) e^{3 x}, \\
& y_{2}=d_{3}+d_{4} x+d_{5} x^{2}+d_{6} x^{3}, \\
& y_{3}=d_{7} e^{-3 x}, \\
& y_{4}=d_{8} \cos x+d_{9} \sin x .
\end{aligned}
$$

Linear combinations of the listed independent atoms are supposed to reproduce, by assignment of constants, all derivatives of the right side of the differential equation.
2 The fixup rule is applied individually to each of $y_{1}, y_{2}, y_{3}, y_{4}$ to give the corrected trial solution

$$
\begin{aligned}
& y=y_{1}+y_{2}+y_{3}, \\
& y_{1}=x\left(d_{1}+d_{2} x\right) e^{3 x}, \\
& y_{2}=x^{2}\left(d_{3}+d_{4} x+d_{5} x^{2}+d_{6} x^{3}\right), \\
& y_{3}=x\left(d_{7} e^{-3 x}\right), \\
& y_{4}=d_{8} \cos x+d_{9} \sin x .
\end{aligned}
$$

The powers of x multiplied in each case are designed to eliminate terms in the initial trial solution which duplicate atoms appearing in the homogeneous solution y_{h}. The factor is exactly x^{s} of the Edwards-Penney table, where s is the multiplicity of the characteristic equation root r that produced the related atom in the homogeneous solution y_{h}. By design, unrelated atoms are unaffected by the fixup rule, and that is why y_{4} was unaltered.
3 Undetermined coefficient step skipped, according to the problem statement.
4 Undetermined coefficient step skipped, according to the problem statement.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

3. (ch3)

Find by variation of parameters or undetermined coefficients the steady-state periodic solution for the equation $x^{\prime \prime}+2 x^{\prime}+6 x=5 \cos (3 t)$.
Notes on Problem 3.
Solve $x^{\prime \prime}+2 x^{\prime}+6 x=0$ by the recipe to get $x_{h}=c_{1} x_{1}+c_{2} x_{2}, x_{1}=e^{-t} \cos \sqrt{5} t, x_{2}=$ $e^{-t} \sin \sqrt{5} t$. Compute the Wronskian $W=x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}=\sqrt{5} e^{-2 t}$. Then for $f(t)=5 \cos (3 t)$,

$$
x_{p}=x_{1} \int x_{2} \frac{-f}{W} d t+x_{2} \int x_{1} \frac{f}{W} d t .
$$

The integrations are horribly difficult, so the method of choice is undetermined coefficients.
The trial solution is $x=d_{1} \cos 3 t+d_{2} \sin 3 t$. Substitute the trial solution to obtain the answers $d_{1}=-1 / 3, d_{2}=2 / 3$. The unique periodic solution x_{SS} is extracted from the general solution $x=x_{h}+x_{p}$ by crossing out all negative exponential terms (terms which limit to zero at infinity). If $x_{p}=d_{1} \cos 3 t+d_{2} \sin 3 t=(1 / 3)(-\cos 3 t+2 \sin 3 t)$, then

$$
x_{\mathrm{SS}}=\frac{-1}{3} \cos 3 t+\frac{2}{3} \sin 3 t .
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (ch5)

The eigenanalysis method says that the system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution $\mathbf{x}(t)=$ $c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

then
(1) [75\%] Display eigenanalysis details for A.
(2) [25\%] Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Notes on Problem 4.
Answer (1): The eigenpairs are

$$
5,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) ; \quad 4,\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right) ; \quad 3,\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

Answer (2): The eigenanalysis method implies

$$
\mathbf{x}(t)=c_{1} e^{5 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2} e^{4 t}\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) .
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

5. (ch5)

(a) Find the eigenvalues of the matrix $A=\left[\begin{array}{rrrr}1 & 1 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 2 & 1\end{array}\right]$.
(b) Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to Putzer's spectral formula. Don't expand matrix products, in order to save time. However, do compute the coefficient functions $r_{1}, r_{2}, r_{3}, r_{4}$.
Notes on Problem 5.
(a) Subtract λ from the diagonal elements of A and expand the $\operatorname{determinant} \operatorname{det}(A-\lambda I)$ to obtain the characteristic polynomial $(1-\lambda)(1-\lambda)(4-\lambda)(1-\lambda)=0$. The eigenvalues are the roots: $\lambda=1,1,1,4$. Used here was the cofactor rule for determinants. Sarrus' rule does not apply for 4×4 determinants (an error) and the triangular rule likewise does not directly apply (another error).
(b) Let

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Define functions $r_{1}, r_{2}, r_{3}, r_{4}$ to be the components of the vector solution $\mathbf{r}(t)$ to the initial value problem

$$
\mathbf{r}^{\prime}=B \mathbf{r}, \quad \mathbf{r}(0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Solving,

$$
\begin{aligned}
r_{1}=e^{t}, \quad r_{2}=t e^{t}, \quad r_{3}=t^{2} e^{t} / 2 \\
r_{4}=\frac{1}{27} e^{4 t}-\frac{1}{27} e^{t}-\frac{1}{9} t e^{t}-\frac{1}{6} t^{2} e^{t}
\end{aligned}
$$

Define

$$
P_{1}=I, \quad P_{2}=A-I, \quad P_{3}=(A-I)^{2}, \quad P_{4}=(A-I)^{3} .
$$

Then $\mathbf{u}=\left(r_{1} P 1+r_{2} P_{2}+r_{3} P_{3}+r_{4} P_{4}\right) \mathbf{u}_{0}$ implies

$$
\mathbf{u}=\left(r_{1} I+r_{2}(A-I)+r_{3}(A-I)^{2}+r_{4}(A-I)^{3}\right) \mathbf{u}_{0}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

