Name. _____

Applied Linear Algebra 2270-1 Sample Midterm Exam 1 In-Class Tuesday, 17 Feb 2004

Instructions: This in-class exam is 50 minutes. No tables, notes, books or calculators allowed.

- 3. (Inverse of a matrix) An $n \times n$ matrix A is said to have an inverse B if AB = BA = I, where I is the $n \times n$ identity matrix. Prove these facts:
 - **1**. If B_1 and B_2 are inverses of A, then $B_1 = B_2$.
 - **2**. The inverse of the identity I is I.
 - **3**. The zero matrix has no inverse.
 - 4. In checking the inverse relation AB = BA = I, only one of AB = I or BA = I needs to be verified.
- 4. (Elementary Matrices) Let A be a 3×3 matrix and \vec{b} a vector in \mathcal{R}^3 . Define $C = \operatorname{aug}(A, \vec{b})$. Let matrix F be obtained from C by the following: (a) Swap rows 2 and 3; (b) Add -1 times row 3 to row 1; (c) Swap rows 1 and 2; (d) Multiply row 2 by -5. Write a matrix multiplication formula for F in terms of C and explicit elementary matrices.

5. (RREF method)

Let a and b denote constants and consider the system of equations

$$\left(\begin{array}{rrrr}1&a+b&a\\0&0&a\\1&a+b&2a\end{array}\right)\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}0\\a\\a\end{array}\right)$$

- (1) Determine those values of a and b such that the system has a solution.
- (2) For each of the values in (1), solve the system.
- (3) For each of the solutions in (2), check the answer.