Name.

\qquad

Applied Linear Algebra 2270-1 Sample Midterm Exam 1 In-Class Tuesday, 17 Feb 2004

Instructions: This in-class exam is 50 minutes. No tables, notes, books or calculators allowed.
3. (Inverse of a matrix) An $n \times n$ matrix A is said to have an inverse B if $A B=$ $B A=I$, where I is the $n \times n$ identity matrix. Prove these facts:

1. If B_{1} and B_{2} are inverses of A, then $B_{1}=B_{2}$.
2. The inverse of the identity I is I.
3. The zero matrix has no inverse.
4. In checking the inverse relation $A B=B A=I$, only one of $A B=I$ or $B A=I$ needs to be verified.
5. (Elementary Matrices) Let A be a 3×3 matrix and \vec{b} a vector in \mathcal{R}^{3}. Define $C=\boldsymbol{\operatorname { a u g }}(A, \vec{b})$. Let matrix F be obtained from C by the following: (a) Swap rows 2 and 3; (b) Add -1 times row 3 to row 1; (c) Swap rows 1 and 2; (d) Multiply row 2 by -5 . Write a matrix multiplication formula for F in terms of C and explicit elementary matrices.
6. (RREF method)

Let a and b denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & a+b & a \\
0 & 0 & a \\
1 & a+b & 2 a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
a \\
a
\end{array}\right)
$$

(1) Determine those values of a and b such that the system has a solution.
(2) For each of the values in (1), solve the system.
(3) For each of the solutions in (2), check the answer.

