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5.8 Resonance

The study of vibrating mechanical systems ends here with the theory of
pure and practical resonance.

Pure Resonance

The notion of pure resonance in the differential equation

x′′(t) + ω2

0 x(t) = F0 cos(ωt)(1)

is the existence of a solution that is unbounded as t → ∞. We already
know (page 224) that for ω 6= ω0, the general solution of (1) is the
sum of two harmonic oscillations, hence it is bounded. Equation (1) for
ω = ω0 has by the method of undetermined coefficients the unbounded

oscillatory solution x(t) =
F0

2ω0

t sin(ω0 t). To summarize:

Pure resonance occurs exactly when the natural internal

frequency ω0 matches the natural external frequency ω, in

which case all solutions of the differential equation are un-

bounded.

In Figure 20, this is illustrated for x′′(t) + 16x(t) = 8 cos 4t, which in (1)
corresponds to ω = ω0 = 4 and F0 = 8.
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Figure 20. Pure resonance for

x′′(t) + 16x(t) = 8 cosωt. Graphed are the

solution x(t) = t sin 4t for ω = 4 and the

envelope curves x = ±t.

Resonance and undetermined coefficients. An explanation of
resonance can be based upon the theory of undetermined coefficients.
An initial trial solution of

x′′(t) + 16x(t) = 8 cos ωt

is x = d1 cos ωt + d2 sin ωt. The homogeneous solution xh = c1 cos 4t +
c2 sin 4t considered in the fixup rule has duplicate terms exactly when
the natural frequencies match: ω = 4. Then the final trial solution is

x(t) =

{

d1 cos ωt + d2 sin ωt ω 6= 4,
t(d1 cos ωt + d2 sin ωt) ω = 4.

(2)

Even before the undetermined coefficients d1, d2 are evaluated, we can
decide that unbounded solutions occur exactly when frequency matching
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ω = 4 occurs, because of the amplitude factor t. If ω 6= 4, then xp(t) is
a pure harmonic oscillation, hence bounded. If ω = 4, then xp(t) equals
a time–varying amplitude Ct times a pure harmonic oscillation, hence it
is unbounded.

The Wine Glass Experiment. Equation (1) is advertised as the
basis for a physics experiment which has appeared often on Public Tele-
vision, called the wine glass experiment. A famous physicist, in front
of an audience of physics students, equips a lab table with a frequency
generator, an amplifier and an audio speaker. The valuable wine glass
is replaced by a glass beaker. The frequency generator is tuned to the
natural frequency of the glass beaker (ω ≈ ω0), then the volume knob
on the amplifier is suddenly turned up (F0 adjusted larger), whereupon
the sound waves emitted from the speaker break the glass beaker.

The glass itself will vibrate at a certain frequency, as can be determined
experimentally by pinging the glass rim. This vibration operates within
elastic limits of the glass and the glass will not break under these cir-
cumstances. A physical explanation for the breakage is that an incoming
sound wave from the speaker is timed to add to the glass rim excursion.
After enough amplitude additions, the glass rim moves beyond the elas-
tic limit and the glass breaks. The explanation implies that the external
frequency from the speaker has to match the natural frequency of the
glass. But there is more to it: the glass has some natural damping that
nullifies feeble attempts to increase the glass rim amplitude. The physi-
cist uses to great advantage this natural damping to tune the external
frequency to the glass. The reason for turning up the volume on the
amplifier is to nullify the damping effects of the glass. The amplitude
additions then build rapidly and the glass breaks.

Soldiers Breaking Cadence. The collapse of the Broughton bridge
near Manchester, England in 1831 is blamed for the now–standard prac-
tise of breaking cadence when soldiers cross a bridge. Bridges like the
Broughton bridge have many natural low frequencies of vibration, so it
is possible for a column of soldiers to vibrate the bridge at one of the
bridge’s natural frequencies. The bridge locks onto the frequency while
the soldiers continue to add to the excursions with every step, causing
larger and larger bridge oscillations.

Practical Resonance

The notion of pure resonance is easy to understand both mathematically
and physically, because frequency matching characterizes the event. This
ideal situation never happens in the physical world, because damping is
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always present. In the presence of damping c > 0, it will be established
below that only bounded solutions exist for the forced spring-mass system

mx′′(t) + cx′(t) + kx(t) = F0 cos ωt.(3)

Our intuition about resonance seems to vaporize in the presence of damp-
ing effects. But not completely. Most would agree that the undamped
intuition is correct when the damping effects are nearly zero.

Practical resonance is said to occur when the external frequency ω
has been tuned to produce the largest possible solution (a more precise
definition appears below). It will be shown that this happens for the
condition

ω =
√

k/m − c2/(2m2), k/m − c2/(2m2) > 0.(4)

Pure resonance ω = ω0 ≡
√

k/m is the limiting case obtained by set-
ting the damping constant c to zero in condition (4). This strange but
predictable interaction exists between the damping constant c and the
size of solutions, relative to the external frequency ω, even though all
solutions remain bounded.

The decomposition of x(t) into homogeneous solution xh(t) and partic-
ular solution xp(t) gives some intuition into the complex relationship
between the input frequency ω and the size of the solution x(t).

The homogeneous solution. For positive damping, c > 0, equation
(3) has homogeneous solution xh(t) = c1x1(t) + c2x2(t) where according
to the recipe the basis elements x1 and x2 are given in terms of the roots
of the characteristic equation mr2 + cr + k = 0, as classified by the
discriminant D = c2 − 4mk, as follows:

Case 1, D > 0 x1 = er1t, x2 = er2t with r1 and r2 negative.

Case 2, D = 0 x1 = er1t, x2 = ter1t with r1 negative.

Case 3, D < 0 x1 = eαt cos βt, x2 = eαt sin βt with β > 0
and α negative.

It follows that xh(t) contains a negative exponential factor, regardless
of the positive values of m, c, k. A solution x(t) is called a transient

solution provided it satisfies the relation limt→∞ x(t) = 0. The conclu-
sion:

The homogeneous solution xh(t) of the equation mx′′(t) +
cx′(t) + kx(t) = 0 is a transient solution for all positive

values of m, c, k.

A transient solution graph x(t) for large t lies atop the axis x = 0, as in
Figure 21, because limt→∞ x(t) = 0.
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Figure 21. Transient oscillatory solution

x = 2e−t(cos t + sin t) of the differential

equation x′′ + 2x′ + 2x = 0.

The particular solution. The method of undetermined coefficients
gives a trial solution of the form x(t) = A cos ωt + B sinωt with coeffi-
cients A, B satisfying the equations

(k − mω2)A + (cω)B = F0,
(−cω)A + (k − mω2)B = 0.

(5)

Solving (5) with Cramer’s rule or elimination produces the solution

A =
(k − mω2)F0

(k − mω2)2 + (cω)2
, B =

cωF0

(k − mω2)2 + (cω)2
.(6)

The steady–state solution, periodic of period 2π/ω, is given by

xp(t) =
F0

(k − mω2)2 + (cω)2

(

(k − mω2) cos ωt + (cω) sin ωt
)

=
F0

√

(k − mω2)2 + (cω)2
cos(ωt − α),

(7)

where α is defined by the phase–amplitude relations (see page 216)

C cos α = k − mω2, C sin α = cω,

C = F0/
√

(k − mω2)2 + (cω)2.
(8)

The terminology steady–state refers to that part xss(t) of the solution
x(t) that remains when the transient portion is removed, that is, when
all terms containing negative exponentials are removed. As a result, for
large T , the graphs of x(t) and xss(t) on t ≥ T are the same. This
feature of xss(t) allows us to find its graph directly from the graph of
x(t). We say that xss(t) is observable, because it is the solution visible
in the graph after the transients (negative exponential terms) die out.

Readers may be mislead by the method of undetermined coefficients, in
which it turns out that xp(t) and xss(t) are the same. Alternatively, a
particular solution xp(t) can be calculated by variation of parameters, a
method which produces in xp(t) extra terms containing negative expo-
nentials. These extra terms come from the homogeneous solution – their
appearance cannot always be avoided. This justifies the careful defini-
tion of steady–state solution, in which the transient terms are removed
from xp(t) to produce xss(t).

Practical resonance is said to occur when the external frequency ω
has been tuned to produce the largest possible steady–state amplitude.
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Mathematically, this happens exactly when the amplitude function C =
C(ω) defined in (8) has a maximum. If a maximum exists on 0 < ω < ∞,
then C ′(ω) = 0 at the maximum. The derivative is computed by the
power rule:

C ′(ω) =
−F0

2

2(k − mω2)(−2mω) + 2c2ω

((k − mω2)2 + (cω)2)3/2

= ω
(

2mk − c2 − 2m2ω2
) C(ω)3

F 2
0

(9)

If 2km − c2 ≤ 0, then C ′(ω) does not vanish for 0 < ω < ∞ and hence
there is no maximum. If 2km − c2 > 0, then 2km − c2 − 2m2ω2 = 0 has
exactly one root ω =

√

k/m − c2/(2m2) in 0 < ω < ∞ and by C(∞) = 0
it follows that C(ω) is a maximum. In summary:

Practical resonance for mx′′(t)+ cx′(t)+kx(t) = F0 cos ωt
occurs precisely when the external frequency ω is tuned to

ω =
√

k/m − c2/(2m2) and k/m − c2/(2m2) > 0.

In Figure 22, the amplitude of the steady–state periodic solution is
graphed against the external natural frequency ω, for the differential
equation x′′ + cx′ + 26x = 10 cos ωt and damping constants c = 1, 2, 3.
The practical resonance condition is ω =

√

26 − c2/2. As c increases
from 1 to 3, the maximum point (ω,C(ω)) satisfies a monotonicity con-
dition: both ω and C(ω) decrease as c increases. The maxima for the
three curves in the figure occur at ω =

√
25.5,

√
24,

√
21.5. Pure reso-

nance occurs when c = 0 and ω =
√

26.

C

ω
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Figure 22. Practical resonance for

x′′ + cx′ + 26x = 10 cosωt: amplitude

C = 10/
√

(26 − ω2)2 + (cω)2 versus

external frequency ω for c = 1, 2, 3.

Uniqueness of the Steady–State Periodic Solution. Any two
solutions of the nonhomogeneous differential equation (3) which are pe-
riodic of period 2π/ω must be identical. The vehicle of proof is to show
that their difference x(t) is zero. The difference x(t) is a solution of the
homogeneous equation, it is 2π/ω–periodic and it has limit zero at infin-
ity. A periodic function with limit zero must be zero, therefore the two
solutions are identical. A more general statement is true:

Consider the equation mx′′(t) + cx′(t) + kx(t) = f(t) with

f(t + T ) = f(t) and m, c, k positive. Then a T–periodic

solution is unique.
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In Figure 23, the unique steady–state periodic solution is graphed for the
differential equation x′′+2x′+2x = sin t+2cos t. The transient solution
of the homogeneous equation and the steady–state solution appear in
Figure 24. In Figure 25, several solutions are shown for the differential
equation x′′ + 2x′ + 2x = sin t + 2cos t, all of which reproduce eventually
the steady–state solution x = sin t.
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Figure 23. Steady-state periodic

solution x(t) = sin t of the differential

equation x′′ + 2x′ + 2x = sin t + 2 cos t.
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Figure 24. Transient solution of

x′′ + 2x′ + 2x = 0 and the steady-state

solution of x′′ + 2x′ + 2x = sin t + 2 cos t.
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Figure 25. Solutions of

x′′ + 2x′ + 2x = sin t + 2 cos t with x′(0) = 1
and x(0) = 1, 2, 3, all of which

graphically coincide with the

steady-state solution x = sin t for t ≥ π.

Pseudo–Periodic Solution. Resonance gives rise to solutions of
the form x(t) = A(t) sin(ωt−α) where A(t) is a time–varying amplitude.
Figure 26 shows such a solution, which is called a pseudo–periodic

solution because it has a natural period 2π/ω arising from the trigono-
metric factor sin(ωt − α). The only requirement on A(t) is that it be
non–vanishing, so that it acts like an amplitude. The pseudo–period of
a pseudo–periodic solution can be determined graphically, by computing
the length of time it takes for x(t) to vanish three times.
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Figure 26. The pseudo-periodic

solution x = te−t/4 sin(3t) of

16x′′ + 8x′ + 145x = 96e−t/4 cos 3t and its

envelope curves x = ±te−t/4.

Exercises 5.8

Resonance and Beats. Classify for
resonance or beats. In the case of res-
onance, find an unbounded solution.
In the case of beats, find the solution
for x(0) = 0, x′(0) = 0, then graph

it through a full period of the slowly-
varying envelope.

1. x′′ + 4x = 10 sin2t

2. x′′ + 4x = 5 sin 2t
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3. x′′ + 100x = 10 sin9t

4. x′′ + 100x = 5 sin 9t

5. x′′ + 25x = 5 sin 4t

6. x′′ + 25x = 5 cos 4t

7. x′′ + 16x = 5 sin 4t

8. x′′ + 16x = 10 sin 4t

Resonant Frequency and Ampli-
tude. Consider mx′′ + cx′ + kx =
F0 cos(ωt). Compute the steady-state
oscillation A cos(ωt) + B sin(ωt), its
amplitude C =

√
A2 + B2, the tuned

practical resonance frequency ω∗, the
resonant amplitude C∗ and the ratio
100C/C∗.

9. m = 1, β = 2, k = 17, F0 = 100,
ω = 4.

10. m = 1, β = 2, k = 10, F0 = 100,
ω = 4.

9. m = 1, β = 4, k = 5, F0 = 10,
ω = 2.

10. m = 1, β = 2, k = 6, F0 = 10,
ω = 2.

9. m = 1, β = 4, k = 5, F0 = 5,
ω = 2.

10. m = 1, β = 2, k = 5, F0 = 5,
ω = 3/2.


