Definitions.

Pivot of $A \quad$ A column in $\operatorname{rref}(A)$ which contains a leading one has a corresponding column in A, called a pivot column of A.

Basis of V It is an independent set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ from data set V whose linear combinations generate all data items in V. Generally, a basis is discovered by taking partial derivatives on symbols representing arbitrary constants.

Main Results.

Theorem 21 (Dimension)

If a vector space V has a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ and also a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{q}$, then $p=q$. The dimension of V is this unique number p.

Lemma 1 (Pivot Columns and Dependence) A nonpivot column of A is a linear combination of the pivot columns of A.

Theorem 22 (Independence)
The pivot columns of a matrix A are linearly independent.

Definitions.

$\operatorname{rank}(A) \quad$ The number of leading ones in $\operatorname{rref}(A)$
nullity $(A) \quad$ The number of columns of A minus $\operatorname{rank}(A)$
Pivot of $A \quad$ A column number in $\operatorname{rref}(A)$ which contains a leading one.

Main Results.
Theorem 23 (Rank-Nullity Equation)
$\operatorname{rank}(A)+\operatorname{nullity}(A)=$ column dimension of A
Theorem 24 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of independent columns of A. Equivalently, $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Theorem 25 (Pivot Method)

Let A be the augmented matrix of $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}$. Let the leading ones in $\operatorname{rref}(A)$ occur in columns i_{1}, \ldots, i_{p}. Then a largest independent subset of the k vectors \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} is the set

$$
\mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}, \ldots, \mathbf{v}_{i_{p}}
$$

Definitions.

$\operatorname{kernel}(A)=\operatorname{nullspace}(A)=\{\mathrm{x}: A \mathrm{x}=0\}$.
Image $(A)=\operatorname{colspace}(A)=\{\mathbf{y}: \mathbf{y}=A \mathbf{x}$ for some $\mathbf{x}\}$.
$\operatorname{rowspace}(A)=\operatorname{colspace}\left(A^{T}\right)=\left\{\mathbf{w}: \mathbf{w}=A^{T} \mathbf{y}\right.$ for some $\left.\mathbf{y}\right\}$.
$\operatorname{dim}(V)$ is the number of elements in a basis for V.

How to Compute Null, Row, Column Spaces

Null Space. Compute $\operatorname{rref}(A)$. Write out the general solution x to $A \mathrm{x}=0$, where the free variables are assigned parameter names t_{1}, \ldots, t_{k}. Report the basis for nullspace (A) as the list $\partial_{t_{1}} \mathbf{x}, \ldots, \partial_{t_{k}} \mathbf{x}$.

Column Space. Compute $\operatorname{rref}(A)$. Identify the pivot columns i_{1}, \ldots, i_{k}. Report the basis for colspace (A) as the list of columns i_{1}, \ldots, i_{k} of A.

Row Space. Compute $\operatorname{rref}\left(A^{T}\right)$. Identify the lead variable columns i_{1}, \ldots, i_{k}. Report the basis for rowspace (A) as the list of rows i_{1}, \ldots, i_{k} of A.
Alternatively, compute $\operatorname{rref}(A)$, then $\operatorname{rowspace}(A)$ has a (different) basis consisting of the list of nonzero rows of $\operatorname{rref}(A)$.

Theorem 26 (Dimension Identities)

(a) $\operatorname{dim}(\operatorname{nullspace}(A))=\operatorname{dim}(\operatorname{kernel}(A))=\operatorname{nullity}(A)$
(b) $\operatorname{dim}(\operatorname{colspace}(A))=\operatorname{dim}(\operatorname{Image}(A))=\operatorname{rank}(A)$
(c) $\operatorname{dim}(\operatorname{rowspace}(A))=\operatorname{rank}(A)$
(d) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}(\operatorname{Image}(A))=$ column dimension of A
(e) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}\left(\operatorname{kernel}\left(A^{T}\right)\right)=$ column dimension of A

An Equivalence Test in R^{n}

Assume given two sets of fixed vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$, in the same space R^{n}. A test will be developed for equivalence of bases, in a form suited for use in computer algebra systems and numerical laboratories.

Theorem 27 (Equivalence Test for Bases)

Define augmented matrices

$$
\begin{aligned}
& B=\operatorname{aug}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \\
& C=\operatorname{aug}\left(\mathbf{u}_{1}, \ldots ., \mathbf{u}_{\ell}\right) \\
& W=\operatorname{aug}(B, C)
\end{aligned}
$$

The relation

$$
k=\ell=\operatorname{rank}(B)=\operatorname{rank}(C)=\operatorname{rank}(W)
$$

implies

1. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is an independent set.
2. $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ is an independent set.
3. $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$

In particular, colspace $(B)=$ colspace (C) and each set of vectors is an equivalent basis for this vector space.

Proof: Because $\operatorname{rank}(B)=k$, then the first k columns of W are independent. If some column of C is independent of the columns of B, then W would have $k+1$ independent columns, which violates $k=\operatorname{rank}(W)$. Therefore, the columns of C are linear combinations of the columns of the columns of B. The vector space $U=\operatorname{colspace}(C)$ is therefore a subspace of the vector space $V=$ colspace (B). Because each vector space has dimension k, then $U=V$. The proof is complete.

Equivalent Bases: Computer Illustration

The following maple code applies the theorem to verify that the two bases determined from the colspace command in maple and the pivot columns of A are equivalent. In maple, the report of the column space basis is identical to the nonzero rows of $\operatorname{rref}\left(A^{T}\right)$.

```
with(linalg):
A:=matrix([[1,0,3],[3,0,1],[4,0,0]]);
colspace(A); # Solve Ax=0, basis v1,v2 below
v1:=vector([2,0,-1]);v2:=vector([0,2,3]);
rref(A); # Find the pivot cols=1,3
u1:=col(A,1); u2:=col(A,3); # pivot col basis
B:=augment(v1,v2); C:=augment(u1,u2);
W:=augment(B,C);
rank(B),rank(C),rank(W); # Test requires all equal 2
```


Equivalent Bases

A false test. The relation

$$
\operatorname{rref}(B)=\operatorname{rref}(C)
$$

holds for a substantial number of examples. However, it does not imply that each column of C is a linear combination of the columns of B. For example, define

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\operatorname{rref}(B)=\operatorname{rref}(C)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

but $\operatorname{col}(C, 2)$ is not a linear combination of the columns of B. This means $V=$ colspace (B) is not equal to $U=$ colspace (C). Geometrically, V and U are planes in R^{3} which intersect only along the line L through the two points ($0,0,0$) and ($1,0,1$).

