Definitions.

- Pivot of A A column in rref(A) which contains a leading one has a corresponding column in A, called a pivot column of A.
- Basis of V It is an independent set v_1, \ldots, v_k from data set V whose linear combinations generate all data items in V. Generally, a basis is discovered by taking partial derivatives on symbols representing arbitrary constants.

Main Results.

Theorem 21 (Dimension)

If a vector space V has a basis $\mathbf{v}_1, \ldots, \mathbf{v}_p$ and also a basis $\mathbf{u}_1, \ldots, \mathbf{u}_q$, then p = q. The **dimension** of V is this unique number p.

Lemma 1 (Pivot Columns and Dependence) A nonpivot column of A is a linear combination of the pivot columns of A.

Theorem 22 (Independence)

The pivot columns of a matrix A are linearly independent.

Definitions.

$\operatorname{rank}(A)$	The number of leading ones in $rref(A)$
$\operatorname{nullity}(A)$	The number of columns of A minus $rank(A)$
Pivot of A	A column number in $rref(A)$ which contains a leading one.

Main Results.

Theorem 23 (Rank-Nullity Equation)

rank(A) + nullity(A) = column dimension of A

Theorem 24 (Row Rank Equals Column Rank) The number of independent rows of a matrix A equals the number of independent columns of A. Equivalently, rank $(A) = \operatorname{rank}(A^T)$.

Theorem 25 (Pivot Method)

Let A be the augmented matrix of v_1, \ldots, v_k . Let the leading ones in rref(A) occur in columns i_1, \ldots, i_p . Then a largest independent subset of the k vectors v_1 , \ldots , v_k is the set

 $\mathbf{v}_{i_1}, \mathbf{v}_{i_2}, \ldots, \mathbf{v}_{i_p}.$

Definitions.

 $\operatorname{kernel}(A) = \operatorname{nullspace}(A) = \{ \mathbf{x} : A\mathbf{x} = \mathbf{0} \}.$

Image(A) = colspace(A) = {y : y = Ax for some x}.

rowspace(A) = colspace(A^T) = {w : w = A^T y for some y}.

 $\dim(V)$ is the number of elements in a basis for V.

How to Compute Null, Row, Column Spaces

- **Null Space.** Compute $\operatorname{rref}(A)$. Write out the general solution \mathbf{x} to $A\mathbf{x} = \mathbf{0}$, where the free variables are assigned parameter names t_1, \ldots, t_k . Report the basis for $\operatorname{nullspace}(A)$ as the list $\partial_{t_1}\mathbf{x}, \ldots, \partial_{t_k}\mathbf{x}$.
- **Column Space.** Compute rref(A). Identify the pivot columns i_1 , ..., i_k . Report the basis for rcolspace(A) as the list of columns i_1 , ..., i_k of A.
- **Row Space.** Compute $\operatorname{rref}(A^T)$. Identify the lead variable columns i_1, \ldots, i_k . Report the basis for $\operatorname{rowspace}(A)$ as the list of rows i_1, \ldots, i_k of A.

Alternatively, compute $\operatorname{rref}(A)$, then $\operatorname{rowspace}(A)$ has a (different) basis consisting of the list of nonzero rows of $\operatorname{rref}(A)$.

Theorem 26 (Dimension Identities)

- (a) $\dim(\operatorname{nullspace}(A)) = \dim(\operatorname{kernel}(A)) = \operatorname{nullity}(A)$
- (b) $\dim(\operatorname{colspace}(A)) = \dim(\operatorname{Image}(A)) = \operatorname{rank}(A)$
- (c) $\dim(\operatorname{rowspace}(A)) = \operatorname{rank}(A)$
- (d) $\dim(\operatorname{kernel}(A)) + \dim(\operatorname{Image}(A)) = \operatorname{column dimension of } A$
- (e) dim(kernel(A)) + dim(kernel(A^T)) = column dimension of A

An Equivalence Test in \mathbb{R}^n

Assume given two sets of fixed vectors v_1, \ldots, v_k and u_1, \ldots, u_ℓ , in the same space \mathbb{R}^n . A test will be developed for equivalence of bases, in a form suited for use in computer algebra systems and numerical laboratories.

Theorem 27 (Equivalence Test for Bases)

Define augmented matrices

$$B = \operatorname{aug}(\mathbf{v}_1, \dots, \mathbf{v}_k)$$

$$C = \operatorname{aug}(\mathbf{u}_1, \dots, \mathbf{u}_\ell)$$

$$W = \operatorname{aug}(B, C)$$

The relation

$$k = \ell = \operatorname{rank}(B) = \operatorname{rank}(C) = \operatorname{rank}(W)$$

implies

- **1**. $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is an independent set.
- 2. $\mathbf{u}_1, \ldots, \mathbf{u}_\ell$ is an independent set.
- **3**. span{ $\mathbf{v}_1,\ldots,\mathbf{v}_k$ } = span{ $\mathbf{u}_1,\ldots,\mathbf{u}_\ell$ }

In particular, colspace(B) = colspace(C) and each set of vectors is an equivalent basis for this vector space.

Proof: Because $\operatorname{rank}(B) = k$, then the first k columns of W are independent. If some column of C is independent of the columns of B, then W would have k + 1 independent columns, which violates $k = \operatorname{rank}(W)$. Therefore, the columns of C are linear combinations of the columns of the columns of B. The vector space $U = \operatorname{colspace}(C)$ is therefore a subspace of the vector space $V = \operatorname{colspace}(B)$. Because each vector space has dimension k, then U = V. The proof is complete.

Equivalent Bases: Computer Illustration

The following maple code applies the theorem to verify that the two bases determined from the colspace command in maple and the pivot columns of A are equivalent. In maple, the report of the column space basis is identical to the nonzero rows of $\operatorname{rref}(A^T)$.

Equivalent Bases

A false test. The relation

 $\operatorname{rref}(B) = \operatorname{rref}(C)$

holds for a substantial number of examples. However, it does not imply that each column of C is a linear combination of the columns of B. For example, define

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then

$$\operatorname{rref}(B) = \operatorname{rref}(C) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix},$$

but col(C, 2) is not a linear combination of the columns of B. This means V = colspace(B) is not equal to U = colspace(C). Geometrically, V and U are planes in R^3 which intersect only along the line L through the two points (0, 0, 0) and (1, 0, 1).