Name. $_$	
Scores	
	_ Problem 1. Periodic harvesting.
	_ Problem 2. Cross bow.
	_ Problem 3. Gaussian algorithm.
-	_ Problem 4. Inverse matrix.
-	_ Problem 5. In-class, October 18.
	Average

Applied Differential Equations 2250-1 Version A-M Midterm Exam 2 In-Class Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.

5. (RREF method)

Let a and b denote constants and consider the system of equations

$$\begin{pmatrix} 1 & a+b & b \\ 0 & 0 & a \\ 1 & a+b & a+b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ a \\ b \end{pmatrix}$$

- (1) Determine those values of a and b such that the system has a solution.
- (2) For each of the values in (1), solve the system.
- (3) For each of the solutions in (2), check the answer.

Name	
Scores	
	_ Problem 1 . Periodic harvesting.
	_ Problem 2. Cross bow.
	_ Problem 3 . Gaussian algorithm.
	_ Problem 4. Inverse matrix.
	_ Problem 5 . In-class, October 18.
	Average

Applied Differential Equations 2250-1 Version N-Z Midterm Exam 2 In-Class Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.

5. (RREF method)

Let c and d denote constants and consider the system of equations

$$\begin{pmatrix} 1 & c-d & -d \\ 0 & 0 & c \\ 1 & c-d & c-d \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ c \\ -d \end{pmatrix}$$

- (1) Determine those values of c and d such that the system has a solution.
- (2) For each of the values in (1), solve the system.
- (3) For each of the solutions in (2), check the answer.

Name	
Scores	
	_ Problem 1. Periodic harvesting.
	_ Problem 2. Cross bow.
	_ Problem 3 . Gaussian algorithm.
	_ Problem 4. Inverse matrix.
	_ Problem 5 . In-class, October 18
	Average

Applied Differential Equations 2250-3 Midterm Exam 2 In-Class Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.

5. (RREF method)

Let a and b denote constants and consider the system of equations

$$\begin{pmatrix} 1 & a+b & b \\ 0 & 0 & a \\ 1 & a+b & a+b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3a \\ 2b \end{pmatrix}$$

- (1) Determine those values of a and b such that the system has a solution.
- (2) For each of the values in (1), solve the system.
- (3) For each of the solutions in (2), check the answer.