Applied Differential Equations 2250

Sample Midterm Exam 2, 7:30 and 10:45
Exam date: Tuesday, 28 March 2006
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (rref)
(a) Determine b such that the system has infinitely many solutions:

$$
\begin{aligned}
x+2 y+z & =b \\
3 x+y+2 z & =2 b \\
4 x+3 y+3 z & =1+b
\end{aligned}
$$

Answer check (a) in maple:

```
A:=matrix([[1,2,1,b], [3,1,2,2*b],[4,3,3,1+b]]);
    A1:=addrow (A,1,3,-1);
    A2:=addrow(A1, 2, 3, -1);
    1-2b == O gives infinitely many solutions
```

(b) Determine a, b such that the system has infinitely many solutions:

$$
\begin{aligned}
x+2 y+z & =a \\
5 x+y+2 z & =3 a \\
6 x+3 y+b z & =1+a
\end{aligned}
$$

Answer check (b) in maple:

```
with(linalg):
A:=matrix([[1, 2, 1, a], [5, 1, 2, 3*a], [6, 3, b, 1+a]]);
A1:=addrow (A,1,3,-1);
A2:=addrow (A1, 2, 3,-1);
A3:=addrow (A2, 1, 2, -5);
A4:=mulrow(A3, 2, -1/9);
A5:=addrow (A4, 2, 1, -2);
-3+b == 0 and 3a-1 == 0 gives one free variable and infinitely many solutions
```

2. (vector spaces)
(a) Give two examples of vector spaces of functions, one of dimension two and one of dimension three.
(b) Let S be the vector space of all continuous functions on the real line and let V be the subset of S given by all solutions of the differential equation $y^{\prime}=-2 y$. Prove that V is a subspace of S.
(c) Find a basis for the subspace of \mathcal{R}^{3} given by the system of equations

$$
\begin{array}{r}
x+2 y-z=0 \\
x+y-2 z=0 \\
y+z=0,
\end{array}
$$

Answers:
(a) $V=\left\{c_{1}+c_{2} t\right\}$ and $W=\left\{c_{1}+c_{2} t+c_{3} t^{2}\right\}$ are vector spaces of polynomials with $\operatorname{dim}(V)=2$ and $\operatorname{dim}(W)=3$.
(b) All functions y in V look like $y=c_{1} e^{-2 t}$. Adding two such functions gives a function in V and
multiplying such a function by a scalar gives a function in V. Then V is closed under addition and scalar multiplication. Therefore, V is a subspace of S, by the subspace criterion.
(c) The general solution is

$$
x=3 t_{1}, \quad y=-t_{1}, \quad z=t_{1} .
$$

A basis is $\left(\begin{array}{r}3 \\ -1 \\ 1\end{array}\right)$.
3. (independence)
(a) Let $\mathbf{u}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right), \mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), \mathbf{w}=\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$. State and apply a test that shows $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are dependent.
(b) Extract from the list below a largest set of independent vectors.
$\mathbf{a}=\left(\begin{array}{r}1 \\ -1 \\ 0 \\ -1\end{array}\right), \mathbf{b}=\left(\begin{array}{r}2 \\ -2 \\ 0 \\ -2\end{array}\right), \mathbf{c}=\left(\begin{array}{r}3 \\ -1 \\ 0 \\ 1\end{array}\right), \mathbf{d}=\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 4\end{array}\right), \mathbf{e}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 3\end{array}\right)$.
(c) Assume that matrix D is invertible. Prove that $D \mathbf{a}, D \mathbf{b}, D \mathbf{c}$ are independent if and only if a, \mathbf{b}, \mathbf{c} are independent.
Answer checks and details:
(a) The test says that three vectors are dependent if and only if the rref of the augmented matrix of the three vectors has rank different from three.
Let $A:=$ matrix $([[1,2,1],[-1,1,2],[1,0,-1]])$; and compute $\operatorname{rref}(A)$; in maple. Then the rref has a row of zeros, so the vectors are dependent.
(b) Let $\mathrm{A}:=\mathrm{matrix}([[1,2,3,0,1],[-1,-2,-1,2,1],[0,0,0,0,0],[-1,-2,1,4,3]])$;
and compute $\operatorname{rref}(\mathrm{A})$; in maple. The position of leading ones identifies a, \mathbf{c} as independent.
(c) A linear combination of $D \mathbf{a}, D \mathbf{b}, D \mathbf{c}$ equals zero if and only if D times the same linear combination of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ equals zero. Since D is invertible, $D\left(c_{1} \mathbf{a}+c_{2} \mathbf{b}+c_{3} \mathbf{c}\right)=\mathbf{0}$ if and only if $c_{1} \mathbf{a}+c_{2} \mathbf{b}+c_{3} \mathbf{c}=\mathbf{0}$, proving independence of one set is equivalent to independence of the other set.
4. (determinants and elementary matrices)
(a)Assume given 3×3 matrices A, B. Suppose $B=E_{1} E_{2} A$ and E_{1}, E_{2} are elementary matrices representing swap rules. Explain precisely why $\operatorname{det}(B)=\operatorname{det}(A)$.
(b) Let A and B be two 7×7 matrices such that $A B$ contains two duplicate rows. Explain precisely why either $\operatorname{det}(A)$ or $\operatorname{det}(B)$ is zero.
Answers and details:
(a) $\operatorname{det}(B)=\operatorname{det}(E 1) \operatorname{det}(E 2) \operatorname{det}(A)$ by the product rule for determinants. Each swap rule has determinant -1 . So $\operatorname{det}(B)=(-1)(-1) \operatorname{det}(A)=\operatorname{det}(A)$.
(b) $\operatorname{det}(A B)=0$ because the determinant has two duplicate rows. Then $\operatorname{det}(A) \operatorname{det}(B)=0$ by the product theorem for determinants. Hence either $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$.
5. (inverses and Cramer's rule)
(a) Determine all values of x for which A^{-1} exists: $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 2 & 0 & -3 \\ 0 & x & 1\end{array}\right)$.
(b) Solve for y in $A \mathbf{u}=\mathbf{b}$ by Cramer's rule: $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 3 & 0 & 2 \\ 2 & -2 & 1\end{array}\right), \quad \mathbf{u}=\left(\begin{array}{c}x \\ y \\ z\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$.

Answer checks in maple:
(a) Let $\mathrm{A}:=$ matrix $([[1,2,0],[2,0,-3],[0, \mathrm{x}, 1]])$; then compute $\operatorname{det}(\mathrm{A})$; to give $x \neq 4 / 3$, because the unique solution case is exactly $\operatorname{det}(A) \neq 0$.
(b) Let $\mathrm{A}:=\operatorname{matrix}([[1,2,0],[3,0,2],[2,-2,1]])$; and $\mathrm{b}:=\operatorname{vector}([1,0,-1])$; then compute from linsolve(A,b) ; to conclude that $x=0, y=1 / 2, z=0$.
The hand solution uses Cramer's rule to give $y=\Delta_{2} / \Delta$ where $\Delta=\operatorname{det}(A)$ and Δ_{1} is the same determinat but column 2 replaced by vector \mathbf{b}.

