\qquad

Applied Differential Equations 2250-1 and 2250-2 Midterm Exam 2, Spring 2004

Take-home problems \#1 and \#2: March 8 and March 12, 2004 In-class Exam Date: 10 March, 2004

1. (Gaussian algorithm) Due Monday, March 8, 2004 at class time.

Consider a 3×3 linear system $A \mathbf{x}=\mathbf{b}$, which contains the symbols a, b, c.

$$
\begin{aligned}
& \text { Version A-D: } \\
& \left\{\begin{aligned}
2 x+(a+b) y+c z & =b \\
3 x+0 y+c z & =2 b \\
7 x+2(a+b) y+3 c z & =4 b
\end{aligned}\right. \\
& \text { Version L-Q: } \\
& \left\{\begin{aligned}
2 x+(a+c) y+c z & =2 b \\
x+2 a y+c z & =b \\
4 x+(5 a+c) y+3 c z & =4 b
\end{aligned}\right. \\
& \begin{array}{l}
\text { Version E-K: } \\
\left\{\begin{array}{rr}
x+(a+c) y+c z & =b \\
x+2 c y+c z & = \\
3 x+(a+5 c) y+3 c z & =3 b
\end{array}\right. \\
\text { Version R-Z: } \\
\left\{\begin{aligned}
& 3 x+(a+c) y+2 c z= \\
& x+2 c y+c z= \\
& 5 x+(a+5 c) y+4 c z= \\
& 5 x+
\end{aligned}\right.
\end{array}
\end{aligned}
$$

(a) Determine conditions on a, b, c such that $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}. Report the several conditions as Cases 1, 2, 3, (25\%)
(b) For each condition in (a), display the general solution (25\%), rank (5\%) and nullity (5\%) of the system.
(c) Check each solution in (b). Maple answer checks are acceptable. (20\%)
(d) Verify that for all a, b, c not listed in (a), there is no solution of $A \mathbf{x}=\mathbf{b} .(20 \%)$

Maple Answer Check Example

```
with(linalg):unassign('r','t'):
A:=(a,b,c)->matrix([[2,2*a+c,c],[3,a,2*c],[5,3*a+c,3*c]]);
B:=b->vector([b, 2*b, 3*b]);
C:=augment (A (a,b,c),B(b)): 'C'=eval (C), RREF=rref (C);
C1:=augment(A(-3*c/4,b,c),B(b)): 'C1'=eval(C1),RREF=rref(C1);
    [x,y,z]=linsolve(A(-3*c/4,b,c),B(b),'r','t'),rank=r,nullity=3-r;
    # This checks one answer in (b), not all answers.
```

Staple this page to the front of your submitted problem \#1.
The version is to match the first letter of your last name.
\qquad

Applied Differential Equations 2250-1 and 2250-2 Midterm Exam 2, Spring 2004
 Take-home problem \#2: March 12, 2004

2. (Jules Verne Problem) Due Friday, March 12, 2004 at class time.

Assume a model

$$
\frac{d^{2} r}{d t^{2}}=-\frac{G m_{1}}{\left(R_{1}+r\right)^{2}}+\frac{G m_{2}}{\left(R_{2}-R_{1}-r\right)^{2}}, \quad r(0)=0, \quad r^{\prime}(0)=v_{0}
$$

where R_{2} is the mean center-to-center distance from the earth to the moon and R_{1} is the mean radius of the earth. The mass m_{1} of the earth and m_{2} of the moon appear, plus the universal gravitation constant G. All units are $M K S$.
(a) Display the two gravitational forces on the projectile due to the moon and the earth (10%). Identify the corresponding terms in the model (10\%)
(b) Calculate the distance r^{*} at which the projectile has net acceleration zero. Give a symbolic answer (10%) and also a numerical answer $\approx 3.39 \times 10^{8}$ meters (10%).
(c) Calculate the minimal launch velocity $v_{0}^{*}=\sqrt{2 F(0)-2 F\left(r^{*}\right)}$, where

$$
F(r)=\frac{G m_{1}}{R_{1}+r}+\frac{G m_{2}}{R_{2}-R 1-r}
$$

Display the answer in meters per second and miles per hour. (10\%)
(d) Conduct a numerical experiment to find the flight time to the moon. Let the radius of the moon be $R_{3}=1.74$ e 6 meters. Assume the launch velocity $r^{\prime}(0)$ is v_{1} meters per second faster than the minimal launch velocity v_{0}^{*}, where v_{1} is given by: (50%)

$$
\begin{array}{ll}
\text { Version A-D: } & v_{1}=22 \\
\text { Version L-Q }: & v_{1}=83
\end{array}
$$

Staple this page to the front of your submitted problem \#2.
The version is to match the first letter of your last name.
Sample maple code follows.

Maple code for the Jules Verne problem

```
\# Group 1: initialize
\(\mathrm{G}:=6.6726 \mathrm{e}-11: \mathrm{m} 1:=5.975 \mathrm{e} 24: \mathrm{m} 2:=7.36 \mathrm{e} 22\) :
R1:=6.378e6: R2:=3.84e8: R3:=1.74e6: R4:=R2-R1-R3:
de: \(=\operatorname{diff}(r(t), t, t)=-G * m 1 /(r(t)+R 1) \wedge 2+G * m 2 /(R 2-R 1-r(t))^{\wedge} 2:\)
\# Group 2: Search for flight time T.
\(\mathrm{v} 0:=11200: \mathrm{T}:=162800\) : ic:=r(0)=0,D(r)(0)=v0:
\(\mathrm{p}:=\mathrm{dsolve}(\{\mathrm{de}, \mathrm{ic}\}, r(\mathrm{t})\), type=numeric, method=lsode);
\(\mathrm{Y}:=\mathrm{t}->\mathrm{rhs}(\mathrm{p}(\mathrm{t})[2]):\)
plot ( \(\{\) ' \(Y(t)\) ', \(R 4\}, t=0 . . T, 0 . . R 4\) ) ; \(Y(T)-R 4\);
\# Plot done. Change v0, T and re-execute group 2, until
\# the plotted curve reaches the upper right corner or
\# Y(T)-R4 is approximately zero.
\# Group 3: Solve for flight time Tstar.
T1:=T-200: T2:=T:
\# If T is close enough to the flight time to the moon,
\# then fsolve() prints a precise answer for the flight time.
Tstar:=fsolve('Y(x)'=R4, x, T1..T2);
\# Answer check: Y(Tstar)-R4 should be approximately zero.
Y(Tstar)-R4;
```

Do not submit this page with your solution.
\qquad

Applied Differential Equations 2250-1 and 2250-2 Sample In-Class Midterm Exam 2, Version A-L Wednesday, 10 March, 2004

Instructions. The exam is in-class, 50 minutes. No books, notes, calculators, computers or outside materials allowed.
3. (Inverse matrix) Consider for symbols a, b the matrix

$$
A=\left(\begin{array}{lll}
1 & b & 0 \\
a & 0 & b \\
0 & 1 & 1
\end{array}\right)
$$

(a) Display a determinant condition for the existence of the inverse A^{-1}. (20\%)
(b) A basic non-determinant theorem exists to test the non-existence of A^{-1} when the condition in (a) fails. State such a theorem and illustrate how it applies to this problem. (20\%)
(c) Find A^{-1} under the conditions in (a). (60\%)
\qquad

Applied Differential Equations 2250-1 and 2250-2 Sample In-Class Midterm Exam 2, Version A-L
 Wednesday, 10 March, 2004

4. (rref and inverses)
(a) Determine all values of symbol a such that the system has infinitely many solutions: (35\%)

$$
\begin{aligned}
x+2 y+z & =a \\
5 x+y+2 z & =3 a \\
6 x+3 y+3 z & =1+a
\end{aligned}
$$

(b) Determine all values of x for which A^{-1} exists: (35\%)

$$
A=\left(\begin{array}{rrr}
1 & 2 & 0 \\
2 & 0 & -3 \\
0 & x & 1
\end{array}\right)
$$

(c) Assume given 3×3 matrices A, B. Suppose $B=E_{1} E_{2} A$ and E_{1}, E_{2} are elementary matrices representing swap rules. Explain precisely why $\operatorname{det}(B)=\operatorname{det}(A)$. (30\%)
\qquad

Applied Differential Equations 2250-1 and 2250-2 Sample In-Class Midterm Exam 2, Version A-L
 Wednesday, 10 March, 2004

5. (Cramer's rule and adjoints)

Define

$$
A=\left(\begin{array}{lll}
2 & 0 & 3 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

(a) Display the formulas for Cramer's rule for the system $A \mathbf{x}=\mathbf{b}$, without evaluating the determinants. (40%)
(b) Find x_{2} explicitly in (a). (30\%)
(c) Display the adjoint of the matrix A. (30%)

