Applied Differential Equations 2250-1 and 2250-2
 Sample Midterm Exam 1
 Wednesday, 27 October 2004

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (rref)
(a) Determine b such that the system has infinitely many solutions:

$$
\begin{aligned}
x+2 y+z & =b \\
3 x+y+2 z & =2 b \\
4 x+3 y+3 z & =1+b
\end{aligned}
$$

(b) Determine a, b such that the system has infinitely many solutions:

$$
\begin{aligned}
x+2 y+z & =a \\
5 x+y+2 z & =3 a \\
6 x+3 y+b z & =1+a
\end{aligned}
$$

2. (vector spaces)
(a) Give two examples of vector spaces of functions, one of dimension two and one of dimension three.
(b) Let V be the vector space of all continuous functions on the real line and let S be the subset of V given by all solutions of the differential equation $y^{\prime}=-2 y$. Prove that S is a subspace of V.
(c) Find a basis for the subspace of \mathcal{R}^{3} given by the system of equations

$$
\begin{array}{r}
x+2 y-z=0, \\
x+y-2 z=0, \\
y+z=0,
\end{array}
$$

3. (independence)
(a) Let $\mathbf{u}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right), \mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), \mathbf{w}=\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$. State and apply a test that shows $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are dependent.
(b) Extract from the list below a largest set of independent vectors.

$$
\mathbf{a}=\left(\begin{array}{r}
1 \\
-1 \\
0 \\
-1
\end{array}\right), \mathbf{b}=\left(\begin{array}{r}
2 \\
-2 \\
0 \\
-2
\end{array}\right), \mathbf{c}=\left(\begin{array}{r}
3 \\
-1 \\
0 \\
1
\end{array}\right), \mathbf{d}=\left(\begin{array}{l}
0 \\
2 \\
0 \\
4
\end{array}\right), \mathbf{e}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
3
\end{array}\right) .
$$

4. (determinants and elementary matrices)
(a)Assume given 3×3 matrices A, B. Suppose $B=E_{1} E_{2} A$ and E_{1}, E_{2} are elementary matrices representing swap rules. Explain precisely why $\operatorname{det}(B)=\operatorname{det}(A)$.
(b) Let A and B be two 7×7 matrices such that $A B$ contains two duplicate rows. Explain precisely why either $\operatorname{det}(A)$ or $\operatorname{det}(B)$ is zero.
5. (inverses and Cramer's rule)
(a) Determine all values of x for which A^{-1} exists: $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 2 & 0 & -3 \\ 0 & x & 1\end{array}\right)$.
(b) Solve for y in $A \mathbf{u}=\mathbf{b}$ by Cramer's rule: $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 3 & 0 & 2 \\ 2 & -2 & 1\end{array}\right), \quad \mathbf{u}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$.
