Math 2250 Maple Project 4: Linear Algebra August 2006

Due date: See the internet due dates. Maple lab 4 has problems L4.1, L4.2, L4.3.

References: Code in maple appears in 2250mapleL4-F2006.txt at URL http://www.math.utah.edu/~gustafso/. This document: 2250mapleL4-F2006.pdf.

Problem L4.1. (Matrix Algebra)

Define $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$. Create a worksheet in maple which

states this problem in text, then defines the four objects. The worksheet should contain text, maple code and displays. Continue with this worksheet to answer (1)-(7) below. Submit problem L4.1 as a worksheet printed on 8.5 by 11 inch paper. See Example 1 for maple commands.

- (1) Compute AB and BA. Are they the same?
- (2) Compute A + B and B + A. Are they the same?
- (3) Let C = A + B. Compare C^2 to $A^2 + 2AB + B^2$. Explain why they are different.
- (4) Compute transposes $C_1 = (AB)^T$, $C_2 = A^T$ and $C_3 = B^T$. Find an equation for C_1 in terms of C_2 and C_3 . Verify the equation.
- (5) Solve for X in BX = v by three different methods.
- (6) Solve $A\mathbf{Y} = \mathbf{v}$ for \mathbf{Y} . Do an answer check.
- (7) Solve $A\mathbf{Z} = \mathbf{w}$. Explain your answer.

Problem L4.2. (Row space)

Let $A = \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 2 & 3 & -2 & 1 & -3 \\ 0 & 1 & -4 & -3 & -15 \\ 1 & 2 & -3 & -1 & -0 \end{pmatrix}$. Find three different bases for the row space of A, using the following methods.

- 1. The method of Example 2, below.
- 2. The maple command rowspace(A)
- **3**. The **rref**-method: select rows from $\mathbf{rref}(A)$.

Verify that all three bases are equivalent.

Problem L4.3. (Matrix Equations)

Let $A = \begin{pmatrix} 8 & 10 & 3 \\ -3 & -5 & -3 \\ -4 & -4 & 1 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Let P denote a 3×3 matrix. Assume the following result (proved

below):

Lemma 1. The equality AP = PT holds if and only if the columns \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of P satisfy $A\mathbf{v}_1 = \mathbf{v}_1$, $A\mathbf{v}_2 = -2\mathbf{v}_2, \ A\mathbf{v}_3 = 5\mathbf{v}_3.$

(a) Determine three specific columns for P such that $det(P) \neq 0$ and AP = PT. Infinitely many answers are possible. See Example 4 for the maple method that determines a column of P.

(b) After reporting the three columns, check the answer by computing AP - PT (it should be zero) and det(P) (it should be nonzero).

Staple this page on top of the maple work sheets. Examples on the next page ...

Example 1. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 9 \\ 8 \\ 3 \end{pmatrix}$. Create a maple work sheet. Define and display matrix A

and vector **b**. Then compute

- (1) The inverse of A.
- (2) The augmented matrix $C = \mathbf{aug}(A, \mathbf{b})$.
- (3) The reduced row echelon form $R = \operatorname{rref}(C)$.
- (4) The column \mathbf{X} of R which solves $A\mathbf{X} = \mathbf{b}$.
- (5) The matrix A^3 .
- (6) The transpose of A.
- (7) The matrix $A 3A^2$.
- (8) The solution \mathbf{X} of $A\mathbf{X} = \mathbf{b}$ by two methods different than (4).

Solution: A lab instructor can help you to create a blank work sheet in maple, enter code and print the work sheet. The code to be entered appears below. To get help, enter [?linalg into a worksheet, then select commands that match ones below.

```
with(linalg):
A:=matrix([[1,2,3],[2,-1,1],[3,0,-1]]);
b:=vector([9,8,3]);
print("(1)"); inverse(A);
print("(2)"); C:=augment(A,b);
print("(3)"); R:=rref(C);
print("(4)"); X:=col(R,4);
print("(5)"); evalm(A^3);
print("(6)"); transpose(A);
print("(7)"); evalm(A-3*(A^2));
print("(8)"); X:=linsolve(A,b); X:=evalm(inverse(A) &* b);
```

Example 2. Let $A = \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 2 & 3 & -2 & 1 & -3 \\ 3 & 5 & -5 & 1 & -8 \\ 4 & 3 & 8 & 2 & 3 \end{pmatrix}$.

- (1) Find a basis for the column space of A.
- (2) Find a basis for the row space of A.
- (3) Find a basis for the nullspace of A.
- (4) Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
- (5) Find the dimensions of the nullspace, row space and column space of A.

Solution: The theory applied: The columns of B corresponding to the leading ones in $\mathbf{rref}(B)$ are independent and form a basis for the column space of B. These columns are called the **pivot columns** of B. Results for the row space can be obtained by applying the above theory to the transpose of the matrix.

The maple code which applies is

```
with(linalg):
A:=matrix([[ 1, 1, 1, 2, 6],
           [2, 3, -2, 1, -3],
           [3, 5, -5, 1, -8],
           [4, 3, 8, 2, 3]]);
print("(1)"); C:=rref(A); # leading ones in columns 1,2,4
```

```
BASIScolumnspace=col(A,1),col(A,2),col(A,4);

print("(2)"); F:=rref(transpose(A)); # leading ones in columns 1,2,3

BASISrowspace=row(A,1),row(A,2),row(A,3);

print("(3)"); nullspace(A); linsolve(A,vector([0,0,0,0]));

print("(4)"); RANK=rank(A); NULLITY=coldim(A)-rank(A);

print("(5)"); DIMnullspace=coldim(A)-rank(A); DIMrowspace=rank(A);

DIMcolumnspace=rank(A);
```

Example 3. Let $A = \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 2 & 3 & -2 & 1 & -3 \\ 3 & 5 & -5 & 1 & -8 \\ 4 & 3 & 8 & 2 & 3 \end{pmatrix}$. Verify that the following column space bases of A are equivalent.

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\3\\5\\3 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2\\1\\1\\2 \end{pmatrix},$$
$$\mathbf{w}_1 = \begin{pmatrix} 1\\0\\0\\-3 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 0\\1\\0\\17 \end{pmatrix}, \quad \mathbf{w}_3 = \begin{pmatrix} 0\\0\\1\\-9 \end{pmatrix}.$$

Solution: The theory says that bases $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ are equivalent bases if and only if the augmented matrices $F = \mathbf{aug}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, $G = \mathbf{aug}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ and $H = \mathbf{aug}(F, G)$ satisfy the rank condition $\mathbf{rank}(F) = \mathbf{rank}(G) = \mathbf{rank}(H) = 3$.

The maple code which applies is

We remark that the second basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ of the example was discovered from the maple code

B:=rref(transpose(A)); # pivot cols 1,2,3 w1:=row(B,1); w2:=row(B,2); w3:=row(B,3); Example 4. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 0 & 0 \end{pmatrix}$. Solve the equation $A\mathbf{x} = -3\mathbf{x}$ for \mathbf{x} .

The maple details appear below. The idea is to write the problem as a homogeneous problem $(A - (-3)I)\mathbf{x} = \mathbf{0}$, which always has a solution.

```
with(linalg):
A:=matrix([[1,2,3],[2,-1,1],[3,0,0]]);
linsolve(evalm(A-(-3)*diag(1,1,1)),vector([0,0,0]));
# ans: t_1*vector([-2,1,2])
# Basis == partial on t_1 == vector([-2,1,2])
```

Proof of Lemma 1. Define $r_1 = 1$, $r_2 = -2$, $r_3 = 5$. Assume AP = PT, $P = \mathbf{aug}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ and $T = \mathbf{diag}(r_1, r_2, r_3)$. The definition of matrix multiplication implies that $AP = \mathbf{aug}(A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3)$ and $PT = \mathbf{aug}(r_1\mathbf{v}_1, r_2\mathbf{v}_2, r_3\mathbf{v}_3)$. Then AP = PT holds if and only if the columns of the two matrices match, which is equivalent to the three equations $A\mathbf{v}_1 = r_1\mathbf{v}_1$, $A\mathbf{v}_2 = r_2\mathbf{v}_2$, $A\mathbf{v}_3 = r_3\mathbf{v}_3$. The proof is complete.

End of Maple Lab 4: Linear Algebra.