Systems of Differential Equations

- Solving a Triangular System
- Solving Systems with Non-Triangular \boldsymbol{A}
- How to Solve a Non-Triangular System $\mathbf{u}^{\prime}=\boldsymbol{A u}$
- An illustration

Solving a Triangular System

An illustration. Let us solve $\mathbf{u}^{\prime}=\boldsymbol{A u}$ for a triangular matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

The first equation $\boldsymbol{u}_{1}^{\prime}=\boldsymbol{u}_{1}$ has solution $\boldsymbol{u}_{1}=\boldsymbol{c}_{1} \boldsymbol{e}^{t}$. The second equation becomes

$$
u_{2}^{\prime}=2 c_{1} e^{t}+u_{2}
$$

which is a first order linear differential equation with solution $u_{2}=\left(2 c_{1} t+c_{2}\right) e^{t}$. The general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ is

$$
u_{1}=c_{1} e^{t}, \quad u_{2}=2 c_{1} t e^{-t}+c_{2} e^{t}
$$

Solving Systems with Non-Triangular \boldsymbol{A}
Let $\boldsymbol{A}=\left(\begin{array}{cc}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right)$ be non-triangular. Then both $\boldsymbol{b} \neq \mathbf{0}$ and $\boldsymbol{c} \neq \mathbf{0}$ must be satisfied. The scalar form of the system $\mathbf{u}^{\prime}=\mathbf{A u}$ is

$$
\begin{aligned}
& u_{1}^{\prime}=a u_{1}+b u_{2} \\
& u_{2}^{\prime}=c u_{1}+d u_{2}
\end{aligned}
$$

Theorem 1 (Solving Non-Triangular $\mathbf{u}^{\prime}=A \mathbf{u}$)
Solutions $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ of $\mathbf{u}^{\prime}=A \mathbf{u}$ are linear combinations of the list of atoms obtained from the roots r of the quadratic equation

$$
\operatorname{det}(A-r I)=0
$$

Proof of the Non-Triangular Theorem

The method is to differentiate the first equation, then use the equations to eliminate $\boldsymbol{u}_{2}, \boldsymbol{u}_{2}^{\prime}$. This results in a second order differential equation for \boldsymbol{u}_{1}. The same differential equation is satisfied also for \boldsymbol{u}_{2}. The details:

$$
\begin{aligned}
u_{1}^{\prime \prime} & =a u_{1}^{\prime}+b u_{2}^{\prime} \\
& =a u_{1}^{\prime}+b c u_{1}+b d u_{2} \\
& =a u_{1}^{\prime}+b c u_{1}+d\left(u_{1}^{\prime}-a u_{1}\right) \\
& =(a+d) u_{1}^{\prime}+(b c-a d) u_{1}
\end{aligned}
$$

Differentiate the first equation.
Use equation $u_{2}^{\prime}=c u_{1}+d u_{2}$.
Use equation $u_{1}^{\prime}=a u_{1}+b u_{2}$. Second order equation for \boldsymbol{u}_{1} found
The characteristic equation is $r^{2}-(a+d) r+(b c-a d)=0$, which is exactly the expansion of $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})=\mathbf{0}$. The proof is complete.

How to Solve a Non-Triangular System $\mathbf{u}^{\prime}=\boldsymbol{A u}$

\qquad
Finding \boldsymbol{u}_{1}. The two roots $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ of the quadratic produce an atom list \boldsymbol{L} of two elements, as in the second order recipe.
In case the roots are distinct, $\boldsymbol{L}=\left\{e^{r_{1} t}, e^{r_{2} t}\right\}$. Then \boldsymbol{u}_{1} is a linear combination of atoms:

$$
u_{1}=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

Finding $\boldsymbol{u}_{\boldsymbol{2}}$. Isolate $\boldsymbol{u}_{\boldsymbol{2}}$ in the first differential equation by division:

$$
u_{2}=\frac{1}{b}\left(u_{1}^{\prime}-a u_{1}\right)
$$

The two formulas for $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ represent the general solution of the system $\mathbf{u}^{\prime}=\boldsymbol{A u}$, when \boldsymbol{A} is 2×2.

An illustration

Let us solve $\mathbf{u}^{\prime}=A \mathbf{u}$ when

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

The equation $\operatorname{det}(A-r I)=0$ is

$$
(1-r)^{2}-4=0
$$

The roots are $r=-1$ and $r=3$. The atom list is $L=\left\{e^{-t}, e^{3 t}\right\}$.
Then \boldsymbol{u}_{1} is a linear combination of the atoms in \boldsymbol{L} :

$$
u_{1}=c_{1} e^{-t}+c_{2} e^{3 t} .
$$

The first equation $u_{1}^{\prime}=u_{1}+2 u_{2}$ implies

$$
\begin{aligned}
u_{2} & =\frac{1}{2}\left(u_{1}^{\prime}-u_{1}\right) \\
& =-c_{1} e^{-t}+c_{2} e^{3 t}
\end{aligned}
$$

The general solution of $\mathbf{u}^{\prime}=A u$ is then

$$
u_{1}=c_{1} e^{-t}+c_{2} e^{3 t}, \quad u_{2}=-c_{1} e^{-t}+c_{2} e^{3 t}
$$

