Vector space V

It is a **data set** *V*. Storage uses some organization system. Included is a **toolkit** of eight (8) algebraic properties.

- Scalar $k(\vec{X} + \vec{Y}) = k\vec{X} + k\vec{Y}$ multiply $(k_1 + k_2)\vec{X} = k_1\vec{X} + k_2\vec{X}$ $k_1(k_2\vec{X}) = (k_1k_2)\vec{X}$ $1\vec{X} = \vec{X}$

distributive I distributive II distributive III identity

Figure 3. A Data Storage System.

A vector space is a data set storage system which organizes data. The data set is equipped with a toolkit consisting of operations + and \cdot plus 8 algebraic vector space properties.

Closure The operations $\vec{X} + \vec{Y}$ and $k\vec{X}$ are defined and result in a new vector which is also in the set V.

Theorem 5 (Subspaces and Restriction Equations) Let V be one of the vector spaces R^n and let A be an $m \times n$ matrix. Define a smaller set of data items from V by the equation

$$S = \{ \mathbf{x} : \mathbf{x} \text{ in } S, \quad A\mathbf{x} = \mathbf{0} \}.$$

Then S is a subspace of V, that is, operations of addition and scalar multiplication applied to data items in S give answers in S and the 8-property toolkit applies to data items in S.

Proof: Zero is in V because A0 = 0 for any matrix A. To verify the subspace criterion, we verify that $\mathbf{z} = c_1 \mathbf{x} + c_2 \mathbf{y}$ for \mathbf{x} and \mathbf{y} in V also belongs to V. The details:

$$Az = A(c_1x + c_2y)$$

= $A(c_1x) + A(c_2y)$
= $c_1Ax + c_2Ay$
= $c_10 + c_20$
= 0
Because $Ax = Ay = 0$, due to x, y
in V.
= 0
Therefore, $Az = 0$, and z is in V.

The proof is complete.

Independence test for two vectors v_1 , v_2 .

In an abstract vector space V, form the equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2=\mathbf{0}.$$

Solve this equation for c_1 , c_2 . Then v_1 , v_2 are independent in V only if the system has unique solution $c_1 = c_2 = 0$.

Illustration. Two column vectors are tested for independence by forming the system of equations $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$, e.g,

$$c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

This is a homogeneous system Ac = 0 with

$$A = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

The system Ac = 0 can be solved for c by rref methods. Because rref(A) = I, then $c_1 = c_2 = 0$, which verifies independence.

If the system Ac = 0 is square, then $det(A) \neq 0$ applies to test independence. There is **no chance to use determinants** when the system is not square. For instance, in R^3 , the homogeneous system

$$c_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

has vector-matrix form Ac = 0 with 3×2 matrix A.

Rank Test.

In the vector space \mathbb{R}^n , the key to detection of independence is **zero free variables**, or nullity zero, or equivalently, maximal rank. The test is justified from the formula $\operatorname{nullity}(A) + \operatorname{rank}(A) = k$, where k is the column dimension of A.

Theorem 6 (Rank-Nullity Test)

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be k column vectors in \mathbb{R}^n and let A be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A) =$ k and dependent if $\operatorname{rank}(A) < k$. The conditions are equivalent to $\operatorname{nullity}(A) = 0$ and $\operatorname{nullity}(A) > 0$, respectively.

Determinant Test.

In the unusual case when the system arising in the independence test can be expressed as Ac = 0 and Ais square, then det(A) = 0 detects dependence, and $det(A) \neq 0$ detects independence. The reasoning is based upon the formula $A^{-1} = adj(A)/det(A)$, valid exactly when $det(A) \neq 0$.

Theorem 7 (Determinant Test)

Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be *n* column vectors in \mathbb{R}^n and let *A* be the augmented matrix of these vectors. The vectors are independent if $\det(A) \neq$ 0 and dependent if $\det(A) = 0$. The following test enumerates three common conditions for which S fails to pass the sanity test for a subspace. It is justified from the subspace criterion.

Theorem 8 (Testing S not a Subspace)

Let V be an abstract vector space and assume S is a subset of V. Then S is not a subspace of V provided one of the following holds.

- (1) The vector 0 is not in S.
- (2) Some x and -x are not both in S.
- (3) Vector $\mathbf{x} + \mathbf{y}$ is not in S for some \mathbf{x} and \mathbf{y} in S.