Vector space V

It is a data set V. Storage uses some organization system. Included is a toolkit of eight (8) algebraic properties.

Closure The operations $\vec{X}+\vec{Y}$ and $k \vec{X}$ are defined and result in a new vector which is also in the set V.
$\begin{array}{ll}\text { Addition } & \vec{X}+\vec{Y}=\vec{Y}+\vec{X} \\ & \vec{X}+(\vec{Y}+\vec{Z})=(\vec{Y}+\vec{X})+\vec{Z}\end{array}$
commutative associative
Vector $\overrightarrow{0}$ is defined and $\overrightarrow{0}+\vec{X}=\vec{X}$
zero
Vector $-\vec{X}$ is defined and $\vec{X}+(-\vec{X})=\overrightarrow{0} \quad$ negative
Scalar

$$
\begin{aligned}
& k(\vec{X}+\vec{Y})=k \vec{X}+k \vec{Y} \\
& \left(k_{1}+k_{2}\right) \vec{X}=k_{1} \vec{X}+k_{2} \vec{X} \\
& k_{1}\left(k_{2} \vec{X}\right)=\left(k_{1} k_{2}\right) \vec{X} \\
& 1 \vec{X}=\vec{X}
\end{aligned}
$$

distributive I
distributive II
distributive III
identity

Figure 3. A Data Storage System.
A vector space is a data set storage system which organizes data.
The data set is equipped with a toolkit consisting of operations + and plus 8 algebraic vector space properties.

Theorem 5 (Subspaces and Restriction Equations)

Let V be one of the vector spaces R^{n} and let A be an $m \times n$ matrix. Define a smaller set of data items from V by the equation

$$
S=\{\mathrm{x}: \mathrm{x} \text { in } S, \quad A \mathrm{x}=0\}
$$

Then S is a subspace of V, that is, operations of addition and scalar multiplication applied to data items in S give answers in S and the 8-property toolkit applies to data items in S.

Proof: Zero is in V because $A \mathbf{0}=\mathbf{0}$ for any matrix A. To verify the subspace criterion, we verify that $\mathbf{z}=c_{1} \mathbf{x}+c_{2} \mathbf{y}$ for \mathbf{x} and \mathbf{y} in V also belongs to V. The details:

$$
\begin{aligned}
A \mathbf{z} & =A\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right) \\
& =A\left(c_{1} \mathbf{x}\right)+A\left(c_{2} \mathbf{y}\right) \\
& =c_{1} A \mathbf{x}+c_{2} A \mathbf{y}
\end{aligned}
$$

$$
=c_{1} \mathbf{0}+c_{2} \mathbf{0} \quad \text { Because } A \mathbf{x}=A \mathbf{y}=\mathbf{0}, \text { due to } \mathbf{x}, \mathbf{y}
$$ in V.

$=0 \quad$ Therefore, $A \mathrm{z}=0$, and z is in V.

The proof is complete.

Independence test for two vectors $\mathrm{v}_{1}, \mathrm{v}_{2}$.
In an abstract vector space V, form the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0}
$$

Solve this equation for c_{1}, c_{2}. Then $\mathbf{v}_{1}, \mathbf{v}_{2}$ are independent in V only if the system has unique solution $c_{1}=c_{2}=0$.

Illustration. Two column vectors are tested for independence by forming the system of equations $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0}$, e.g,

$$
c_{1}\binom{-1}{1}+c_{2}\binom{2}{1}=\binom{0}{0} .
$$

This is a homogeneous system $A \mathbf{c}=0$ with

$$
A=\left(\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right), \quad \mathbf{c}=\binom{c_{1}}{c_{2}} .
$$

The system $A \mathbf{c}=\mathbf{0}$ can be solved for \mathbf{c} by rref methods. Because $\operatorname{rref}(A)=I$, then $c_{1}=c_{2}=0$, which verifies independence.

If the system $A \mathbf{c}=\mathbf{0}$ is square, then $\operatorname{det}(A) \neq 0$ applies to test independence. There is no chance to use determinants when the system is not square. For instance, in R^{3}, the homogeneous system

$$
c_{1}\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has vector-matrix form $A \mathbf{c}=0$ with 3×2 matrix A.

Rank Test.

In the vector space R^{n}, the key to detection of independence is zero free variables, or nullity zero, or equivalently, maximal rank. The test is justified from the formula $\operatorname{nullity}(A)+\operatorname{rank}(A)=k$, where k is the column dimension of A.

Theorem 6 (Rank-Nullity Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be k column vectors in R^{n} and let A be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A)=$ k and dependent if $\operatorname{rank}(A)<k$. The conditions are equivalent to nullity $(A)=0$ and nullity $(A)>0$, respectively.

Determinant Test.

In the unusual case when the system arising in the independence test can be expressed as $A \mathbf{c}=0$ and A is square, then $\operatorname{det}(A)=0$ detects dependence, and $\operatorname{det}(A) \neq 0$ detects independence. The reasoning is based upon the formula $A^{-1}=\operatorname{adj}(A) / \operatorname{det}(A)$, valid exactly when $\operatorname{det}(A) \neq 0$.

Theorem 7 (Determinant Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be n column vectors in R^{n} and let A be the augmented matrix of these vectors. The vectors are independent if $\operatorname{det}(A) \neq$ 0 and dependent if $\operatorname{det}(A)=0$.

The following test enumerates three common conditions for which S fails to pass the sanity test for a subspace. It is justified from the subspace criterion.

Theorem 8 (Testing S not a Subspace)
Let V be an abstract vector space and assume S is a subset of V. Then S is not a subspace of V provided one of the following holds.
(1) The vector 0 is not in S.
(2) Some x and -x are not both in S.
(3) Vector $\mathrm{x}+\mathrm{y}$ is not in S for some x and y in S.

