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1 Introduction

In the corner growth model, or directed nearest-neighbor last-passage percolation
(LPP) on the lattice Z

2, i.i.d. random weights {ωx }x∈Z2 are used to define last-passage
times Gx,y between lattice points x ≤ y in Z

2 by

Gx,y = max
x�

n−1∑

k=0

ωxk . (1.1)

The maximum is over paths x� = {x = x0, x1, . . . , xn = y} that satisfy xk+1 − xk ∈
{e1, e2} (up-right paths). Geodesics are paths that maximize in (1.1). Geodesics are
unique ifωx has a continuous distribution. For x ∈ Z

2+, the geodesic from0 to xmust go
through either e1 or e2. These two clusters are separated by the competition interface.
The purpose of this paper is to study the geodesics and competition interface for the
case where the weights are general, subject to a lower bound ω0 ≥ c and a moment
condition E|ω0|2+ε < ∞. We address the key questions of existence, uniqueness, and
coalescence of directional semi-infinite geodesics, nonexistence of doubly infinite
geodesics, and the asymptotic direction of the competition interface.

Systematic study of geodesics in percolation began with the work of Licea and
Newman [31]. Their seminal work on undirected first-passage percolation, summa-
rized in Newman’s ICM paper [36], utilized a global curvature assumption on the
limit shape to derive properties of geodesics, and as a consequence the existence of
Busemann functions, which are limits of gradients of passage times. Assuming ω0 has
a continuous distribution, they proved the existence of a deterministic, full-Lebesgue-
measure set of directions for which there is a unique geodesic out of every lattice point
and that geodesics in a given direction from this set coalesce. Furthermore, for any
two such directions η and ζ there are no doubly infinite geodesics whose two ends
have directions η and −ζ .

The global curvature assumption cannot as yet be checked in percolation models
with general weights, but it can be verified in several models with special features.
One such case is Euclidean first passage percolation based on a homogeneous Poisson
point process. For this model, Howard and Newman [28] showed that every geodesic
has a direction and that in every fixed direction there is at least one geodesic out of
every lattice point.

A number of investigators have built on the approach opened up by Newman et al.
This has led to impressive progress in understanding geodesics, Busemann functions,
coalescence, competition, and stationary processes in directed last-passage percolation
models with enough explicit features to enable verification of the curvature assump-
tions. This work is on models built on Poisson point processes [8,10,11,37,46] and
on the corner growth model with exponential weights [11,12,19,20,38]. In the case of
the exponential corner growth model, another set of tools comes from its connection
with an exactly solvable interacting particle system, namely the totally asymmetric
simple exclusion process (TASEP).

The competition interface of the exponential corner growthmodelmaps to a second-
class particle inTASEP, so this object has been studied fromboth perspectives.An early
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result of Ferrari and Kipnis [18] proved that the scaled location of the second-class
particle in a rarefaction fan converges in distribution to a uniform random variable.
Mountford and Guiol [35] improved this to almost sure convergence with the help
of concentration inequalities and the TASEP variational formula from [43]. Ferrari
and Pimentel [20] gave a different proof of almost sure convergence by applying the
techniques of directed geodesics and then obtained the distribution of the asymptotic
direction of the competition interface from the TASEP results of [18].

Subsequently these results on the almost sure convergence of the competition inter-
face and its limiting random angle were extended from the quadrant to larger classes of
initial profiles in two rounds: first by [19] still with TASEP and geodesic techniques,
and then by [12] by applying their earlier results on Busemann functions [11]. Coupier
[14] also relied on the TASEP connection to sharpen the geodesics results of [20]. He
showed that there are no triple geodesics (out of the origin) in any direction and that
every fixed direction has a unique geodesic.

To summarize, the common thread of the work above is the use of explicit curvature
of the limit shape to control directional geodesics. Coalescence of geodesics leads to
Busemann functions and stationary versions of the percolation process. In exactly
solvable cases, such as the exponential corner growth model, information about the
distribution of the Busemann functions is powerful. For example, it enables calculation
of the distribution of the asymptotic direction of the competition interface [12,19,20]
and to get bounds on the coalescence time of geodesics [38,46].

An independent line of work is that of Hoffman [26,27] on undirected first passage
percolation, with general weights and without regularity assumptions on the limit
shape. Hoffman [26] proved that there are at least two semi-infinite geodesics by
deriving a contradiction from the assumption that all semi-infinite geodesics coalesce.
The technical proof involved the construction of a Busemann function. (Garet and
Marchand [21] gave an independent proof with a different method.) Hoffman [27]
extended this to at least four geodesics. No further information about geodesics was
obtained. In another direction, [44] restricted the number of doubly infinite geodesics
to zero or infinity.

The idea of studying geodesic-like objects to produce stationary processes has also
appeared in random dynamical systems. Article [17] and its extensions [5,6,9,25,29]
prove existence and uniqueness of semi-infinite minimizers of an action functional to
conclude existence and uniqueness of an invariant measure for the Burgers equation
with random forcing. These articles treat situations where the space is compact or
essentially compact. To make progress in the non-compact case, the approach of
Newman et al. was adopted again in [7,8], as mentioned above.

A new approach to the problem of geodesics came in the work of Damron and Han-
son [15] who constructed (generalized) Busemann functions fromweak subsequential
limits of first-passage time differences. This gave access to properties of geodesics,
while weakening the need for the global curvature assumption. For instance, assuming
differentiability and strict convexity of the limit shape, [15] proves that, with prob-
ability one, every semi-infinite geodesic has a direction and for any given direction
there exists a semi-infinite directed geodesic out of every lattice point. They construct
a tree of semi-infinite geodesics in any given direction such that from every lattice
point emanates a unique geodesic in this tree and the tree has no doubly infinite geo-
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desics. However, since the Busemann functions of [15] are constructed from weak
subsequential limits, no claims about uniqueness of directional geodesics are made.
The geodesics constructed in their trees all coalesce, but one cannot infer from this
that all geodesics in a given direction coalesce.

When first-passage percolation is restricted to the upper half plane, [45] was the
first to rule out the existence of doubly infinite geodesics. Auffinger et al. [4] extended
this half-plane result to more general weight distributions and then applied it to prove
coalescence in a tree of geodesics constructed through a limit, as in [15] discussed
above. The constructed tree of geodesics again has no infinite backward paths, but it
is open to show that the geodesics are asymptotically directed in direction e1.

The approach of our work is the opposite of the approach that relies on global
curvature, and closer in spirit to [15]. We begin by constructing the stationary versions
of the percolation process in the form of stationary cocycles. This comes from related
results in queueing theory [32,39]. Local regularity assumptions on the limit shape
then give enough control to prove that these cocycles are also almost sure Busemann
functions. This was done in [23].

In the present paper we continue the project by utilizing the cocycles and the Buse-
mann functions to study geodesics and the competition interface of the corner growth
model with general weights. In other words, what is achieved here is a generalization
of the results of [14,20] without the explicit solvability framework.

A key technical point is that a family of cocycle geodesics can be defined locally
by following minimal gradients of a cocycle. The coalescence proof of [31] applies to
cocycle geodesics. Monotonicity and continuity properties of these cocycle geodesics
allow us to use them to control all geodesics. In the end we reproduce many of the
basic properties of geodesics, some with no assumptions at all and others with local
regularity assumptions on the limit shape. Note that, in contrast with the results for
the explicitly solvable exponential case, our results must take into consideration the
possibility of corners and linear segments in the limit shape.

To control the competition interface we characterize it in terms of the cocycles,
as was done in terms of Busemann functions in [12,20,37]. Here again we can get
interesting results even without regularity assumptions. For example, assuming that
the weight ωx has continuous distribution, the atoms of the asymptotic direction of
the competition interface are exactly the corners of the limit shape. Since the shape
is expected to be differentiable, the conjecture is that the asymptotic direction has
continuous distribution.

To extend our results to ergodic weights and higher dimensions, a possible strategy
that avoids the reliance on queueing theory would be to develop sufficient control
on the gradients Gx,�nξ� − Gy,�nξ� (or their point-to-line counterparts) to construct
cocycles throughweak limits as n → ∞. Thisworkedwell for undirected first-passage
percolation in [15] because the gradients are uniformly integrable. Note however that
when {ωx } are only ergodic, the limiting shape can have corners and linear segments,
and can even be a finite polygon.

Organization of the paper. Section 2 describes the corner growth model and the main
results of the paper. Section 3 states the existence and properties of the cocycles and
Busemann functions on which all the results of the paper are based. Section 4 studies
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cocycle geodesics and proves our results for geodesics. Section 5 proves results for the
competition interface. Section 6 derives the distributions of the asymptotic speed of
the left and right competition interfaces for the corner growth model with geometric
weights. This is an exactly solvable case, but this particular feature has not been
calculated in the past. Appendix A has auxiliary results such as an ergodic theorem
for cocycles proved in [24].

Notation and conventions. R+ = [0,∞), Z+ = {0, 1, 2, 3, . . . }, N = {1, 2, 3, . . . }.
The standard basis vectors of R

2 are e1 = (1, 0) and e2 = (0, 1) and the �1-norm
of x ∈ R

2 is |x |1 = |x · e1| + |x · e2|. For u, v ∈ R
2 a closed line segment on R

2

is denoted by [u, v] = {tu + (1 − t)v : t ∈ [0, 1]}, and an open line segment by
]u, v[= {tu + (1 − t)v : t ∈ (0, 1)}. Coordinatewise ordering x ≤ y means that
x · ei ≤ y · ei for both i = 1 and 2. Its negation x 	≤ y means that x · e1 > y · e1
or x · e2 > y · e2. An admissible or up-right finite path x0,n = (xk)nk=0, infinite
path x0,∞ = (xk)0≤k<∞, or doubly infinite path x−∞,∞ = (xk)k∈Z on Z

2 satisfies
xk − xk−1 ∈ {e1, e2}∀k.

The basic environment space is Ω = R
Z
2
whose elements are denoted by ω. There

is also a larger product space Ω̂ = Ω×Ω ′ whose elements are denoted by ω̂ = (ω, ω′).
A statement that contains ± or ∓ is a combination of two statements: one for the

top choice of the sign and another one for the bottom choice.

2 Main results

2.1 Assumptions

The two-dimensional corner growth model is the last-passage percolation model on
the planar square lattice Z

2 with admissible steps {e1, e2}. Ω = R
Z
2
is the space of

environments or weight configurations ω = (ωx )x∈Z2 . The group of spatial transla-
tions {Tx }x∈Z2 acts on Ω by (Txω)y = ωx+y for x, y ∈ Z

2. Let S denote the Borel
σ -algebra of Ω . P is a Borel probability measure on Ω under which the weights {ωx }
are independent, identically distributed (i.i.d.) nondegenerate random variables with
a 2+ ε moment. Expectation under P is denoted by E. For a technical reason we also
assume P(ω0 ≥ c) = 1 for some finite constant c. Here is the standing assumption,
valid throughout the paper:

P is i.i.d., E[|ω0|p] < ∞ for some p > 2, σ 2 = Var(ω0) > 0, and

P(ω0 ≥ c) = 1 for some c > −∞.
(2.1)

The symbol ω is reserved for these P-distributed i.i.d. weights, also later when they
are embedded in a larger configuration ω̂ = (ω, ω′).

The only reason for assumption P(ω0 ≥ c) = 1 is that Theorem 3.3 below is
proved in [23] by applying queueing theory. In that context ωx is a service time and
the results have been proved only forωx ≥ 0. (The extension toωx ≥ c is immediate.)
Once the queueing results are extended to general real-valued i.i.d. weightsωx subject
to the moment assumption in (2.1), everything in this paper is true for these general
real-valued weights.
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228 N. Georgiou et al.

2.2 Last-passage percolation

Given an environment ω and two points x, y ∈ Z
2 with x ≤ y coordinatewise, define

the point-to-point last-passage time by

Gx,y = max
x0,n

n−1∑

k=0

ωxk .

The maximum is over paths x0,n = (xk)nk=0 that start at x0 = x , end at xn = y
with n = |y − x |1, and have increments xk+1 − xk ∈ {e1, e2}. We call such paths
admissible or up-right.

According to the basic shape theorem (Theorem 5.1(i) of [34]) there exists a non-
random continuous function gpp : R

2+ → R such that

lim
n→∞ n−1 max

x∈Z+
2 : |x |1=n

|G0,x − gpp(x)| = 0 P-almost surely. (2.2)

The shape function gpp is symmetric, concave, and 1-homogeneous (i.e. gpp(cξ) =
cgpp(ξ) for ξ ∈ R

2+ and c ∈ R+).

2.3 Gradients and convexity

Since gpp is homogeneous, it is completely determined by its values on U = {te1 +
(1 − t)e2 : t ∈ [0, 1]}, the convex hull of R = {e1, e2}. The relative interior riU is
the open line segment {te1 + (1 − t)e2 : t ∈ (0, 1)}. Let

D = {ξ ∈ riU : gpp is differentiable at ξ}

be the set of points at which the gradient ∇gpp(ξ) exists in the usual sense of differ-
entiability of functions of several variables. By concavity the set (riU )�D is at most
countable.

A point ξ ∈ riU is an exposed point if there exists a vector v ∈ R
2 such that

∀ζ ∈ (riU )�{ξ} : gpp(ζ ) < gpp(ξ) + v · (ζ − ξ). (2.3)

The set of exposed points of differentiability of gpp is E = {ξ ∈ D : (2.3) holds}. For
ξ ∈ E we have v = ∇gpp(ξ) uniquely. Condition (2.3) is formulated in terms of U
because as a homogeneous function gpp cannot have exposed points on R

2+.
It is expected but currently unknown that gpp is differentiable on all of riU . But

left and right gradients exist. A left limit ξ → ζ on U means that ξ · e1 increases to
ζ · e1, while in a right limit ξ · e1 decreases to ζ · e1.

For ζ ∈ riU define one-sided gradient vectors by

∇gpp(ζ±) · e1 = lim
ε↘0

gpp(ζ ± εe1) − gpp(ζ )

±ε

and ∇gpp(ζ±) · e2 = lim
ε↘0

gpp(ζ∓εe2) − gpp(ζ )

∓ε
.
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Concavity of gpp ensures the limits exist. ∇gpp(ξ±) coincide (and equal ∇gpp(ξ)) if
and only if ξ ∈ D . Furthermore, on riU ,

∇gpp(ζ−) = lim
ξ ·e1↗ζ ·e1

∇gpp(ξ±), ∇gpp(ζ+) = lim
ξ ·e1↘ζ ·e1

∇gpp(ξ±), (2.4)

and gpp(ζ ) = ∇gpp(ζ±) · ζ. (2.5)

For ξ ∈ riU define maximal line segments on which gpp is linear,Uξ− for the left
gradient at ξ and Uξ+ for the right gradient at ξ , by

Uξ± = {ζ ∈ riU : gpp(ζ ) − gpp(ξ) = ∇g(ξ±) · (ζ − ξ)}. (2.6)

Either or both segments can degenerate to a point. Let

Uξ = Uξ− ∪ Uξ+ = [ξ, ξ ] with ξ · e1 ≤ ξ · e1. (2.7)

If ξ ∈ D thenUξ+ = Uξ− = Uξ , while if ξ /∈ D thenUξ+ ∩Uξ− = {ξ}. If ξ ∈ E

then Uξ = {ξ}. Notations ξ and ξ can be iterated: ξ = η for η = ξ and ξ = ζ for

ζ = ξ . If ξ ∈ D then ξ = ξ and similarly for ξ . When needed we use the convention

Uei = Uei± = {ei }, i ∈ {1, 2}.
For ζ · e1 < η · e1 in riU , [ζ, η] is a maximal linear segment for gpp if ∇gpp exists

and is constant in ]ζ, η[ but not on any strictly larger open line segment in riU . Then
[ζ, η] = Uζ+ = Uη− = Uξ for any ξ ∈ ]ζ, η[. If furthermore ζ, η ∈ D we say that
gpp is differentiable at the endpoints of this maximal linear segment. This hypothesis
appears several times. A linear segment of gpp must lie in the interior riU . This is a
consequence of Martin’s shape universality on the boundary of R

2+ [34, Theorem 2.4]
which states that

gpp(1, s) = E(ω0) + 2σ
√
s + o(

√
s) as s ↘ 0. (2.8)

gpp is strictly concave if there is no nondegenerate line segment on riU on which gpp
is linear.

Exposed points can be characterized as follows. All points of (riU )�D are
exposed. A point ξ ∈ D is exposed if and only if it does not lie in any closed linear
segment of gpp.

2.4 Geodesics

For u ≤ v in Z
2 an admissible path x0,n from x0 = u to xn = v (with n = |v − u|1)

is a (finite) geodesic from u to v if

Gu,v =
n−1∑

k=0

ωxk .

123



230 N. Georgiou et al.

An infinite up-right path x0,∞ = (xk)0≤k<∞ is a semi-infinite geodesic emanating
from u ∈ Z

2 if x0 = u and for all j > i ≥ 0, xi, j is a geodesic between xi and x j .
Two semi-infinite geodesics x0,∞ and y0,∞ coalesce if there exist m, n ∈ Z+ such
that xm+i = yn+i ∀i ∈ Z+.

For ξ ∈ U , a geodesic x0,∞ is ξ -directed or a ξ -geodesic if xn/|xn|1 → ξ as
n → ∞. A directed geodesic is ξ -directed for some ξ . Flat segments of gpp on U
prevent us from asserting that all geodesics are directed. Hence we say more generally
for a subset V ⊂ U that a geodesic x0,∞ is V -directed if all the limit points of
xn/|xn|1 lie in V . Recall the definition of Uξ± from (2.6) and Uξ = Uξ+ ∪ Uξ−.
Theorem 2.1 (i) The following statements hold for P-almost every ω. For every

u ∈ Z
2 and ξ ∈ U there exists at least one semi-infiniteUξ+-directed geodesic

and at least one semi-infiniteUξ−-directed geodesic starting from u. Every semi-
infinite geodesic is Uξ -directed for some ξ ∈ U .

(ii) If gpp is strictly concave then, P-almost surely, every semi-infinite geodesic is
directed.

(iii) Suppose P{ω0 ≤ r} is a continuous function of r ∈ R. Fix ξ ∈ riU with
Uξ = [ ξ, ξ ] satisfying ξ, ξ, ξ ∈ D . Then P-almost surely there is a unique

Uξ -directed semi-infinite geodesic out of every u ∈ Z
2 and all these geodesics

coalesce. For each u ∈ Z
2 there are at most finitely many sites v ∈ Z

2 such that
the unique Uξ -directed semi-infinite geodesic out of v goes through u.

Under the hypotheses of part (iii) we haveUξ± = Uξ . So there is no contradiction
between parts (i) and (iii).

By (2.8) there are infinitely many distinct sets Uξ±. Hence, without any assump-
tions on the shape gpp, part (i) implies the existence of infinitely many semi-infinite
geodesics from each point u ∈ Z

2. The second part of claim (iii) prevents the exis-
tence of doubly infinite geodesics x−∞,∞ such that x0,∞ isUξ -directed (a.s. in a fixed
direction ξ ). This is not true for all weight distributions (see Example 2.5 below).

For exponentially distributed ω0 the results of Theorem 2.1 appeared earlier as
follows. Theorem 2.1(i)–(ii) is covered by Proposition 7 of [20]. Uniqueness and coa-
lescence in part (iii) are in Theorem 1(3) of [14], combined with the coalescence proof
of [31] which was adapted to exponential LPP in Proposition 8 of [20]. Nonexistence
of doubly infinite geodesics is part of Lemma 2 of [38].

When the distribution of ω0 is not continuous, uniqueness of geodesics (Theorem
2.1(iii)) cannot hold. Then we can consider leftmost and rightmost geodesics. The
leftmost geodesic x � (between two given points or in a given direction) satisfies xk ·
e1 ≤ xk · e1 for any geodesic x� of the same category. The rightmost geodesic satisfies
the opposite inequality.

Theorem 2.2 Fix ξ ∈ riU . The following hold almost surely.

(i) Assume ξ is not the right endpoint of a linear segment of gpp (equivalently, ξ = ξ ).

Then there exists a leftmostUξ−-directed geodesic from each u ∈ Z
2 and all these

leftmost geodesics coalesce. For each u ∈ Z
2 there are at most finitely many sites

v ∈ Z
2 such that the leftmost Uξ−-directed geodesic out of v goes through u.

A similar statement holds for rightmost Uξ+-geodesics, under the assumption

ξ = ξ .
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(ii) Assume ξ, ξ, ξ ∈ D . Then for any u ∈ Z
2 and sequence vn such that

|vn|1 → ∞ and ξ · e1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ ξ · e1, (2.9)

the leftmost geodesic from u to vn converges to the unique leftmost Uξ -directed
geodesic from u given in part (i). A similar statement holds for rightmost geodes-
ics.

The convergence statement Theorem 2.2(ii) applies also to the case in Theorem
2.1(iii), and in that case there is just one unique Uξ -directed geodesic, not separate
leftmost and rightmost geodesics. Theorems 2.1 and 2.2 are proved in Sect. 4. In
particular, we give explicit local recipes in terms of a priori constructed cocycles for
defining the geodesics whose existence is claimed in the theorems.

2.5 Busemann functions and Busemann geodesics

By (1.1) the following identities hold along any geodesic x0,m from u to vn :

ωxi = min
(
Gxi ,vn − Gxi+e1,vn , Gxi ,vn − Gxi+e2,vn

)

= Gxi ,vn − Gxi+1,vn , for 0 ≤ i < m. (2.10)

The second equality in (2.10) shows how to construct a finite geodesic ending at vn . To
study semi-infinite geodesics we take vn → ∞ in a particular direction. Point-to-point
Busemann functions are limits of gradientsGx,vn −Gy,vn . The next existence theorem
is Theorem 3.1 from [23].

Theorem 2.3 Fix two points ζ, η ∈ D such that ζ · e1 ≤ η · e1. Assume that either
(i) ζ = η = ξ ∈ E in which case ζ = η = ξ = ξ = ξ , or that

(ii) [ζ, η] is a maximal linear segment of gpp in which case [ζ, η] = [ξ, ξ ] for all
ξ ∈ [ζ, η].

Then there exist integrable random variables {B(x, y) : x, y ∈ Z
2} and an event

Ω0 with P(Ω0) = 1 such that the following holds for each ω ∈ Ω0. For each sequence
vn ∈ Z

2+ such that

|vn|1 → ∞ and ζ · e1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ η · e1, (2.11)

we have the limit

B(ω, x, y) = lim
n→∞

(
Gx,vn (ω) − Gy,vn (ω)

)
for x, y ∈ Z

2. (2.12)

The mean of the limit is given by

∇gpp(ξ) = (E[B(x, x + e1)] , E[B(x, x + e2)]) for all ξ ∈ [ζ, η]. (2.13)
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232 N. Georgiou et al.

In particular, suppose ξ is an exposed point of differentiability of gpp, or ξ lies on
a maximal linear segment of gpp whose endpoints are points of differentiability. Then
a Busemann function Bξ exists in direction ξ in the sense that Bξ (ω, x, y) equals the
limit in (2.12) for any sequence vn/|vn|1 → ξ with |vn|1 → ∞. Furthermore, the
Bξ ’s match on maximal linear segments of gpp with endpoints in D .

Limit (2.12) applied to (2.10) gives

ωxi = min
j∈{1,2} B(ω, xi , xi + e j ) = B(ω, xi , xi+1) P-a.s. (2.14)

The second equality shows how to construct semi-infinite geodesics from a Busemann
function. Such geodesics will be called Busemann geodesics. The next theorem shows
that in a direction that satisfies the differentiability assumptions that ensure existence
of Busemann functions, all geodesics are Busemann geodesics.

Theorem 2.4 Fix ξ ∈ riU withUξ = [ξ, ξ ] such that ξ, ξ, ξ ∈ D . Let B be the limit
from (2.12). Then there exists an event Ω0 with P(Ω0) = 1 and such that statements
(i)–(iii) below hold for each ω ∈ Ω0.

(i) Every up-right path x0,∞ such that ωxk = B(xk, xk+1) for all k ≥ 0 is a semi-
infinite geodesic. We call such a path a Busemann geodesic for B.

(ii) Every semi-infinite geodesic x0,∞ that satisfies

ξ · e1 ≤ lim
n→∞

xn · e1
n

≤ lim
n→∞

xn · e1
n

≤ ξ · e1 (2.15)

is a Busemann geodesic for B.
(iii) Let vn be a sequence that satisfies (2.9). Let m ∈ N. Then ∃n0 ∈ N such that if

n ≥ n0, then every geodesic x0,|vn |1 from x0 = 0 to vn satisfies B(ω, xi , xi+1) =
ωxi for all i = 0, 1, . . . ,m.

Note in particular that the unique geodesics discussed in Theorem 2.1(iii) and
Theorem 2.2(ii) are Busemann geodesics. This theorem is proved in Sect. 4.

Example 2.5 (Flat edge in the percolation cone) Assume (2.1) and furthermore that
ω0 ≤ 1 and pc < P{ω0 = 1} < 1 where pc is the critical probability of oriented site
percolation on Z

2 (see Section 3.2 of [23] for more detail about this setting). Then gpp
has a nondegenerate, symmetric linear segment [η, η] such that η, η ∈ D [3,16,33].
According to Theorems 2.2 and 2.4, from any point u ∈ Z

2 there exist unique leftmost
and rightmost semi-infinite geodesics directed into the segment [η, η], these geodesics
are Busemann geodesics, and finite leftmost and rightmost geodesics converge to these
Busemann geodesics.

Note also, in relation to Theorem 2.1(iii), that a doubly infinite geodesic through the
origin with ωxk ≡ 1, directed into [η, η], can be constructed with positive probability
by joining together a percolating path in thefirst quadrantwith one in the third quadrant.
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Fig. 1 The geodesic tree T0
rooted at 0. The competition
interface (solid line) emanates
from ( 12 , 1

2 ) and separates the
subtrees of T0 rooted at e1 and
e2

0

e2

e1

2.6 Competition interface

For this subsection assume thatP{ω0 ≤ r} is a continuous function of r ∈ R. Thenwith
probability one no two finite paths of any lengths have equal weight. Consequently
for any v ∈ Z

2+ there is a unique finite geodesic between 0 and v. Together these
finite geodesics form the geodesic treeT0 rooted at 0 that spans Z

2+. The two subtrees
rooted at e1 and e2 are separated by an up-right path ϕ = (ϕk)k≥0 on the dual lattice
( 12 ,

1
2 ) + Z

2+ with ϕ0 = ( 12 ,
1
2 ). The path ϕ is called the competition interface. The

term comes from the interpretation that the subtrees are two competing infections on
the lattice [19,20]. See Fig. 1.

Adopt the convention that Gei ,ne j = −∞ for i 	= j and n ≥ 0 (there is no
admissible path from ei to ne j ). Fix n ∈ N. As v moves to the right with |v|1 = n
fixed, the function Ge2,v −Ge1,v is nonincreasing (Lemma A.2 in the appendix). Then
ϕn−1 = (k + 1

2 , n − k − 1
2 ) for the unique 0 ≤ k < n such that

Ge2,(k,n−k) − Ge1,(k,n−k) > 0 > Ge2,(k+1,n−k−1) − Ge1,(k+1,n−k−1). (2.16)

Theorem 2.6 Assume P{ω0 ≤ r} is continuous in r and that gpp is differentiable at
the endpoints of all its linear segments. Then we have the law of large numbers

ξ∗(ω) = lim
n→∞ n−1ϕn(ω) P − a.s. (2.17)

The limit ξ∗ is almost surely an exposed point in riU (recall definition (2.3)). For any
ξ ∈ riU , P(ξ∗ = ξ) > 0 if and only if ξ ∈ (riU )�D . Any open interval outside the
closed linear segments of gpp contains ξ∗ with positive probability.

Whenω0 has continuous distribution, gpp is expected to be strictly concave. Thus the
assumption that gpp is differentiable at the endpoints of its linear segments should really
be vacuously true in the theorem. In light of the expectation that gpp is differentiable,
the conjecture for ξ∗ would be that it has a continuous distribution.

In the exponential case, (2.17) and the explicit distribution of ξ∗ were given in
Theorem 1 of [20].
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Remark 2.7 Assume that P{ω0 ≤ r} is continuous and that gpp is either differentiable
or strictly concave on riU so that no caveats are needed. The minimum in (2.14) with
B = Bξ is taken at j = 1 if ξ ·e1 > ξ∗(Txiω) ·e1 and at j = 2 if ξ ·e1 < ξ∗(Txiω) ·e1.
This will become clear from an alternative definition (5.2) of ξ∗.

The competition interface is a natural direction in which there are two geodesics
out of 0. Nonuniqueness in the random direction ξ∗ does not violate the almost sure
uniqueness in a fixed direction given in Theorem 2.1(iii). For x ∈ Z

2 let U x∗ be the
random set of directions ξ ∈ U such that there are at least two Uξ -directed semi-
infinite geodesics out of x .

Theorem 2.8 Assume P{ω0 ≤ r} is continuous in r . Assume gpp is differentiable
at the endpoints of all its linear segments. The following statements are true with
P-probability one and for all x ∈ Z

2.

(i) ξ∗(Txω) is the unique direction ξ such that there are at least two Uξ -directed
semi-infinite geodesics from x that separate at x and never intersect thereafter.

(ii) U x∗ contains all ξ ∈ (riU )�D , intersects every open interval outside the closed
linear segments of gpp, and is a countably infinite subset of {ξ∗(Tzω) : z ≥ x}.

In the exponential case Theorem 1(1)–(2) of [14] showed that U x∗ is countably
infinite and dense.

Theorems 2.6 and 2.8 are proved in Sect. 5.More is actually true. In Sect. 5we define
ξ∗ on a larger probability space in terms of a priori constructed cocycles, without any
assumptions on gpp. Then even without the differentiability assumptions of Theorems
2.6 and 2.8, corners of the limit shape are the atoms of ξ∗, and there are at least two
Uξ∗◦Tx -directed semi-infinite geodesics out of x that immediately separate and never
intersect after that. (See Theorem 5.3 below.)

When ω0 does not have continuous distribution, there are two competition inter-
faces: one for the tree of leftmost geodesics and one for the tree of rightmost geodesics.
Then ξ∗ has natural left and right versions, defined in (5.8). We compute the limit dis-
tributions of the two competition interfaces for geometric weights in Sects. 2.7 and 6.

2.7 Exactly solvable models

We illustrate our results in the two exactly solvable cases: the distribution of the
weights ωx with mean m0 > 0 is either

exponential: P{ωx ≥ t} = e−t/m0 for t ∈ R+ with σ 2 = m2
0,

or geometric: P{ωx ≥ k} = (1 − m−1
0 )k for k ∈ N with σ 2 = m0(m0 − 1).

For both cases the point-to-point limit function is

gpp(ξ) = m0(ξ · e1 + ξ · e2) + 2σ
√

(ξ · e1)(ξ · e2).
In the exponential case this formula was first derived by Rost [41] (who presented

the model in its coupling with TASEP without the last-passage formulation) while
early derivations of the geometric case appeared in [13,30,42].
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Since gpp is differentiable and strictly concave, riU = E and all the results of
the previous sections are valid. Theorem 2.3 implies that Busemann functions (2.12)
exist in all directions ξ ∈ riU . The probability distribution of Bξ can be described
explicitly. For the exponential case see for example Theorem 8.1 in [11] or Section
3.3 in [12], and Sections 3.1 and 7.1 in [23] for both cases.

Section 2.4 gives the following results on geodesics. For almost every ω every
semi-infinite geodesic has a direction. For every fixed direction ξ ∈ riU the follow-
ing holds almost surely. There exists a ξ -geodesic out of every lattice point. In the
exponential case, these ξ -geodesics are unique and coalesce. In the geometric case
uniqueness cannot hold, but there exists a unique leftmost ξ -geodesic out of each
lattice point and these leftmost ξ -geodesics coalesce. The same holds for rightmost
ξ -geodesics. Finite (leftmost/rightmost) geodesics from u ∈ Z

2 to vn converge to
infinite (leftmost/rightmost) ξ -geodesics out of u, as vn/|vn|1 → ξ with |vn|1 → ∞.

The description of random directions for nonuniqueness of geodesics in Theorem
2.8(i)–(ii) applies to the exponential case. In the exponential case the asymptotic
direction ξ∗ of the competition interface given by Theorem 2.6 has been studied by
several authors, not only for percolation in the first quadrant Z

2+ as studied here, but
with much more general initial profiles [12,19,20].

Themodelwith geometricweights has a tree of leftmost geodesicswith competition
interface ϕ(l) = (ϕ

(l)
k )k≥0 and a tree of rightmost geodesics with competition interface

ϕ(r) = (ϕ
(r)
k )k≥0. Note that ϕ(r) is to the left of ϕ(l) because in (2.16) there is now

a middle range Ge2,(k,n−k) − Ge1,(k,n−k) = 0 that is to the right (left) of ϕ(r)(ϕ(l)).
Strict concavity of the limit gpp implies (with the arguments of Sect. 5) the almost sure
limits

n−1ϕ(l)
n → ξ (l)∗ and n−1ϕ(r)

n → ξ (r)∗ .

The angles θ
(a)∗ = tan−1(ξ

(a)∗ ·e2/ξ (a)∗ ·e1) for a ∈ {l, r} have the following distributions
(with p0 = m−1

0 denoting the success probability of the geometric): for t ∈ [0, π/2]

P{θ(r)∗ ≤ t} =
√

(1 − p0) sin t√
(1 − p0) sin t + √

cos t

and P{θ(l)∗ ≤ t} =
√
sin t√

sin t + √
(1 − p0) cos t

.

(2.18)

Section 6 derives (2.18). Taking p0 → 0 recovers the exponential case first proved
in [20].

We turn to describe the setting of stationary cocycles inwhich our results are proved.

3 Stationary cocycles and Busemann functions

The results of this paper are based on a construction of stationary cocycles on an
extended space Ω̂ = Ω × Ω ′ where Ω = R

Z
2
is the original environment space

and Ω ′ = SZ
2
is another Polish product space. The details of the construction are in
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Section 7 of [23]. Spatial translations act in the usual manner: with generic elements
of Ω̂ denoted by ω̂ = (ω, ω′) = (ωx , ω

′
x )x∈Z2 = (ω̂x )x∈Z2 , (Tx ω̂)y = ω̂x+y for

x, y ∈ Z
2. The extended probability space is (Ω̂, Ŝ, P̂) where Ŝ is the Borel σ -

algebra and P̂ is a translation-invariant probability measure. Ê denotes expectation
under P̂. In this setting a cocycle is defined as follows.

Definition 3.1 A measurable function B : Ω̂ × Z
2 × Z

2 → R is a stationary L1(̂P)

cocycle if it satisfies the following three conditions ∀x, y, z ∈ Z
2.

(a) Integrability: Ê|B(x, y)| < ∞.
(b) Stationarity: for P̂-a.e. ω̂, B(ω̂, z + x, z + y) = B(Tzω̂, x, y).
(c) Additivity: for P̂-a.e. ω̂, B(ω̂, x, y) + B(ω̂, y, z) = B(ω̂, x, z).

The cocycles of interest are related to the last-passage weights through the next
definition.

Definition 3.2 A stationary L1 cocycle B on Ω̂ recovers weights ω if

ωx = min
i∈{1,2} B(ω̂, x, x + ei ) for P̂-a.e. ω̂ and ∀x ∈ Z

2. (3.1)

The next theorem (reproduced from Theorem 5.2 in [23]) states the existence and
properties of the cocycles. Assumption (2.1) is in force. This is the only place where
the assumption P(ω0 ≥ c) = 1 is needed, and the only reason is that the queueing
results that are used to prove the theorem assume ω0 ≥ 0. In part (i) below we use this
notation: for a finite or infinite set I ⊂ Z

2, I< = {x ∈ Z
2 : x 	≥ z ∀z ∈ I } is the set

of lattice points that do not lie on a ray from I at an angle in [0, π/2]. For example, if
I = {0, . . . ,m} × {0, . . . , n} then I< = Z

2
�Z

2+.

Theorem 3.3 There exist real-valued Borel functions Bξ
±(ω̂, x, y) of (ω̂, ξ, x, y) ∈

Ω̂ × riU × Z
2 × Z

2 and a translation invariant Borel probability measure P̂ on
(Ω̂, Ŝ) such that the following properties hold.

(i) Under P̂, the marginal distribution of the configuration ω is the i.i.d. measure P

specified in assumption (2.1). For each ξ ∈ riU and ±, the R
3-valued process

{ψ±,ξ
x }x∈Z2 defined by

ψ±,ξ
x (ω̂) = (ωx , B

ξ
±(ω̂, x, x + e1), B

ξ
±(ω̂, x, x + e2)) (3.2)

is separately ergodic under both translations Te1 and Te2 . For any I ⊂ Z
2, the

variables
{
(ωx , B

ξ
+(ω̂, x, x + ei ), B

ξ
−(ω̂, x, x + ei )) : x ∈ I, ξ ∈ riU , i ∈ {1, 2}

}

are independent of {ωx : x ∈ I<}.
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(ii) Each process Bξ
± = {Bξ

±(x, y)}x,y∈Z2 is a stationary L1(̂P) cocycle (Definition
3.1) that recovers the weights ω (Definition 3.2):

ωx = Bξ
±(ω̂, x, x + e1) ∧ Bξ

±(ω̂, x, x + e2) P̂-a.s. (3.3)

The mean vectors satisfy

Ê[Bξ
±(0, e1)]e1 + Ê[Bξ

±(0, e2)]e2 = ∇gpp(ξ±). (3.4)

(iii) No two distinct cocycles have a common mean vector. That is, if ∇gpp(ξ+)

= ∇gpp(ζ−) then

Bξ
+(ω̂, x, y) = Bζ

−(ω̂, x, y) ∀ ω̂ ∈ Ω̂, x, y ∈ Z
2

and similarly for all four combinations of ± and ξ, ζ . These equalities hold
for all ω̂ without an almost sure modifier because they come directly from the
construction. In particular, if ξ ∈ D then

Bξ
+(ω̂, x, y) = Bξ

−(ω̂, x, y) = Bξ (ω̂, x, y) ∀ ω̂ ∈ Ω̂, x, y ∈ Z
2,

where the second equality defines the cocycle Bξ .
(iv) There exists an event Ω̂0 with P̂(Ω̂0) = 1 and such that (a) and (b) below hold

for all ω̂ ∈ Ω̂0, x, y ∈ Z
2 and ξ, ζ ∈ riU .

(a) Monotonicity: if ξ · e1 < ζ · e1 then

Bξ
−(ω̂, x, x + e1) ≥ Bξ

+(ω̂, x, x + e1) ≥ Bζ
−(ω̂, x, x + e1)

and Bξ
−(ω̂, x, x + e2) ≤ Bξ

+(ω̂, x, x + e2) ≤ Bζ
−(ω̂, x, x + e2).

(3.5)

(b) Right continuity: if ζn · e1 ↘ ξ · e1 then

lim
n→∞ Bζn± (ω̂, x, y) = Bξ

+(ω̂, x, y). (3.6)

(v) Left continuity at a fixed ξ ∈ riU : there exists an event Ω̂(ξ) with P̂(Ω̂(ξ)) = 1
and such that for any sequence ζn · e1 ↗ ξ · e1

lim
n→∞ Bζn± (ω̂, x, y) = Bξ

−(ω̂, x, y) for ω̂ ∈ Ω̂(ξ), x, y ∈ Z
d . (3.7)

The next result (Theorem 6.1 in [23]) relates the cocycles Bξ
± to limiting G-

increments. We quote the theorem in full for use in the proof of Theorem 2.4 below.
(2.1) is assumed. Recall the line segment Uξ = [ξ, ξ ] with ξ · e1 ≤ ξ · e1 from
(2.6)–(2.7).
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Theorem 3.4 Fix ξ ∈ riU . Then there exists an event Ω̂0 with P̂(Ω̂0) = 1 such that
for each ω̂ ∈ Ω̂0 and for any sequence vn ∈ Z

2+ that satisfies

|vn|1 → ∞ and ξ · e1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ ξ · e1, (3.8)

we have

Bξ
+(ω̂, x, x + e1) ≤ lim

n→∞
(
Gx,vn (ω) − Gx+e1,vn (ω)

)

≤ lim
n→∞

(
Gx,vn (ω) − Gx+e1,vn (ω)

) ≤ B
ξ

−(ω̂, x, x + e1)
(3.9)

and

B
ξ

−(ω̂, x, x + e2) ≤ lim
n→∞

(
Gx,vn (ω) − Gx+e2,vn (ω)

)

≤ lim
n→∞

(
Gx,vn (ω) − Gx+e2,vn (ω)

) ≤ Bξ
+(ω̂, x, x + e2).

(3.10)

Remark 3.5 (i) Theorem 2.3 follows immediately because by Theorem 3.3(iii), B
ξ

± =
Bξ = Bξ

± if ξ, ξ , ξ ∈ D . (ii) If gpp is assumed differentiable at the endpoints of

all its linear segments, then all cocycles Bξ
±(x, y) are in fact functions of ω, that is,

S-measurable (see Theorem 5.3 in [23]).

4 Directional geodesics

This section proves the results on geodesics. We define special geodesics in terms of
the cocycles Bξ

± from Theorem 3.3, on the extended space Ω̂ = Ω ×Ω ′. Assumption
(2.1) is in force. The idea is in the next lemma, followed by the definition of cocycle
geodesics.

Lemma 4.1 Fix ω ∈ Ω . Assume a function B : Z
2 × Z

2 → R satisfies

B(x, y) + B(y, z) = B(x, z) and ωx = B(x, x + e1) ∧ B(x, x + e2)

∀ x, y, z ∈ Z
2.

(a) Let xm,n = (xk)nk=m be any up-right path that follows minimal gradients of B,
that is,

ωxk = B(xk, xk+1) for all m ≤ k < n.

Then xm,n is a geodesic from xm to xn:

Gxm ,xn (ω) =
n−1∑

k=m

ωxk = B(xm, xn). (4.1)
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(b) Let xm,n = (xk)nk=m be an up-right path such that for all m ≤ k < n

either ωxk = B(xk, xk+1) < B(xk, xk + e1) ∨ B(xk, xk + e2)

or xk+1 = xk + e2 and B(xk, xk + e1) = B(xk, xk + e2).

In other words, path xm,n follows minimal gradients of B and takes an e2-step
in a tie. Then xm,n is the leftmost geodesic from xm to xn. Precisely, if x ′

m,n is

an up-right path from x ′
m = xm to x ′

n = xn and Gxm ,xn = ∑n−1
k=m ωx ′

k
, then

xk · e1 ≤ x ′
k · e1 for all m ≤ k ≤ n.

If ties are broken by e1-steps the resulting geodesic is the rightmost geodesic
between xm and xn: xk · e1 ≥ x ′

k · e1 for all m ≤ k < n.

Proof Part (a). Any up-right path ym,n from ym = xm to yn = xn satisfies

n−1∑

k=m

ωyk ≤
n−1∑

k=m

B(yk, yk+1) = B(xm, xn) =
n−1∑

k=m

B(xk, xk+1) =
n−1∑

k=m

ωxk .

Part (b). xm,n is a geodesic by part (a). To prove that it is the leftmost geodesic
assume x ′

k = xk and xk+1 = xk + e1. Then ωxk = B(xk, xk + e1) < B(xk, xk + e2).
Recovery of the weights gives Gx,y ≤ B(x, y) for all x ≤ y. Combined with (4.1),

ωxk + Gxk+e2,xn < B(xk, xk + e2) + B(xk + e2, xn) = B(xk, xn) = Gxk ,xn .

Hence also x ′
k+1 = x ′

k + e1 and the claim about being the leftmost geodesic is proved.
The other claim is symmetric. ��

Next we define cocycle geodesics, that is, geodesics constructed by following
minimal gradients of cocycles Bξ

± constructed in Theorem 3.3. Since our treatment
allows discrete distributions, we introduce a function t on Z

2 to resolve ties. For
ξ ∈ riU , u ∈ Z

2, and t ∈ {e1, e2}Z2
, let xu,t,ξ,±

0,∞ be the up-right path (one path for +,

one for −) starting at xu,t,ξ,±
0 = u and satisfying for all n ≥ 0

xu,t,ξ,±
n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xu,t,ξ,±
n + e1 if Bξ

±(xu,t,ξ,±
n , xu,t,ξ,±

n + e1)

< Bξ
±(xu,t,ξ,±

n , xu,t,ξ,±
n + e2),

xu,t,ξ,±
n + e2 if Bξ

±(xu,t,ξ,±
n , xu,t,ξ,±

n + e2)

< Bξ
±(xu,t,ξ,±

n , xu,t,ξ,±
n + e1),

xu,t,ξ,±
n + t(xu,t,ξ,±

n ) if Bξ
±(xu,t,ξ,±

n , xu,t,ξ,±
n + e1)

= Bξ
±(xu,t,ξ,±

n , xu,t,ξ,±
n + e2).

Cocycles Bξ
± satisfy ωx = Bξ

±(ω̂, x, x + e1) ∧ Bξ
±(ω̂, x, x + e2) (Theorem 3.3(ii))

and so by Lemma 4.1(a), xu,t,ξ,±
0,∞ is a semi-infinite geodesic.

Through the cocycles these geodesics are measurable functions on Ω̂ . If gpp is

differentiable at the endpoints of its linear segments (if any), cocycles Bξ
± are functions
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of ω (Theorem 5.3 in [23]). Then geodesics xu,t,ξ,±
0,∞ can be defined on Ω without the

artificial extension to the space Ω̂ = Ω × Ω ′.
If we restrict ourselves to the event Ω̂0 of full P̂-measure on which monotonicity

(3.5) holds for all ξ, ζ ∈ riU , we can order these geodesics in a naturalway from left to
right. Define a partial ordering on {e1, e2}Z2

by e2 � e1 and then t � t′ coordinatewise.
Then on the event Ω̂0, for any u ∈ Z

2, t � t′, ξ, ζ ∈ riU with ξ · e1 < ζ · e1, and for
all n ≥ 0,

xu,t,ξ,±
n · e1 ≤ xu,t′,ξ,±

n · e1,xu,t,ξ,−
n · e1 ≤ xu,t,ξ,+

n · e1,
and xu,t,ξ,+

n · e1 ≤ xu,t,ζ,−
n · e1.

(4.2)

The leftmost and rightmost tie-breaking rules are t(x) = e2 and t̄(x) = e1 ∀x ∈ Z
2.

The cocycle limits (3.6) and (3.7) force the cocycle geodesics to converge also, as the
next lemma shows.

Lemma 4.2 Fix ξ and let ζn → ξ in riU . If ζn · e1 > ξ · e1 ∀n then for all u ∈ Z
2

P̂{∀k ≥ 0 ∃n0 < ∞ : n ≥ n0 ⇒ xu, t̄, ζn ,±
0,k = xu, t̄, ξ,+

0,k } = 1. (4.3)

Similarly, if ζn ·e1 ↗ ξ ·e1, we have the almost sure coordinatewise limit xu, t, ζn ,±
0,∞ →

xu, t, ξ,−
0,∞ .

Proof It is enough to prove the statement for u = 0. By (3.6) and (3.7), for a given
k and large enough n, if x ≥ 0 with |x |1 ≤ k and Bξ

+(x, x + e1) 	= Bξ
+(x, x + e2),

then Bζn± (x, x + e1) − Bζn± (x, x + e2) does not vanish and has the same sign as

Bξ
+(x, x+e1)−Bξ

+(x, x+e2). From such x geodesics following the minimal gradient

of Bζn± or the minimal gradient of Bξ
+ stay together for their next step. On the other

hand, when Bξ
+(x, x + e1) = Bξ

+(x, x + e2), monotonicity (3.5) implies

Bζn± (x, x + e1) ≤ Bξ
+(x, x + e1) = Bξ

+(x, x + e2) ≤ Bζn± (x, x + e2).

Once again, both the geodesic following the minimal gradient of Bζn± and rules t̄ and

the one following the minimal gradients of Bξ
+ and rules t̄ will next take the same

e1-step. This proves (4.3). The other claim is similar. ��
Recall the segmentsUξ ,Uξ± in riU defined in (2.6)–(2.7) for ξ ∈ riU . The next

theorem concerns the direction of cocycle geodesics.

Theorem 4.3 There exists an event Ω̂0 such that P̂(Ω̂0) = 1 and for each ω̂ ∈ Ω̂0
the following holds:

∀ξ ∈ riU , ∀t ∈ {e1, e2}Z2
, ∀u ∈ Z

2 : xu,t,ξ,±
0,∞ is Uξ±-directed. (4.4)

For ξ ∈ D the ± is immaterial in the statement.
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Proof Fix ξ ∈ riU and abbreviate xn = xu,t̄,ξ,+
n . Gu,xn = Bξ

+(u, xn) by Lemma

4.1(a). Apply Theorem A.1 with cocycle Bξ
+ to write

lim
n→∞ |xn|−1

1 (Gu,xn − ∇gpp(ξ+) · xn) = 0 P̂-almost surely.

Define ζ(ω̂) ∈ U by ζ · e1 = lim xn ·e1|xn |1 . If ζ · e1 > ξ · e1 then ζ /∈ Uξ+ and hence

gpp(ζ ) − ∇gpp(ξ+) · ζ < gpp(ξ) − ∇gpp(ξ+) · ξ = 0.

(The equality is from (2.5). For the inequality, concavity gives ≤ and ζ /∈ Uξ+ rules
out equality.)

Consequently, by the shape theorem (2.2), on the event {ζ · e1 > ξ · e1},

lim
n→∞

|xn|−1
1 (Gu,xn − ∇gpp(ξ+) · xn) < 0.

This proves that

P̂

{
lim
n→∞

xu,t̄,ξ,+
n · e1
|xu,t̄,ξ,+

n |1
≤ ξ · e1

}
= 1.

Repeat the same argument with t̄ replaced by t and ξ by the other endpoint of Uξ+
(which is either ξ or ξ ). To capture all t use geodesics ordering (4.2). An analogous
argument works for ξ−. We have, for a given ξ ,

P̂

{
∀t ∈ {e1, e2}Z2

,∀u ∈ Z
2 : xu,t,ξ,±

0,∞ is Uξ±-directed
}

= 1. (4.5)

Let Ω̂0 be an event of full P̂-probability on which all cocycle geodesics satisfy the
ordering (4.2), and the event in (4.5) holds for both + and − and for ξ in a countable
set U0 that contains all points of nondifferentiability of gpp and a countable dense
subset of D . We argue that (4.4) holds on Ω̂0.

Let ζ /∈ U0 and let ζ denote the right endpoint of Uζ . We show that

lim
n→∞

xu,t̄,ζ
n · e1
|xu,t̄,ζ

n |1
≤ ζ · e1 on the event Ω̂0. (4.6)

(Since ζ ∈ D there is no ± distinction in the cocycle geodesic.) The lim with t and
≥ ζ · e1 comes of course with the same argument.

If ζ · e1 < ζ · e1 pick ξ ∈ D ∩ U0 so that ζ · e1 < ξ · e1 < ζ · e1. Then ξ = ζ and
(4.6) follows from the ordering.

If ζ = ζ , let ε > 0 and pick ξ ∈ D∩U0 so that ζ ·e1 < ξ ·e1 ≤ ξ ·e1 < ζ ·e1+ε. This
is possible because ∇gpp(ξ) converges to but never equals ∇gpp(ζ ) as ξ · e1 ↘ ζ · e1.
Again by the ordering
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lim
n→∞

xu,t̄,ζ
n · e1
|xu,t̄,ζ

n |1
≤ lim

n→∞
xu,t̄,ξ
n · e1
|xu,t̄,ξ

n |1
≤ ξ · e1 < ζ · e1 + ε.

This completes the proof of Theorem 4.3. ��
Lemma 4.4 (a) Fix ξ ∈ riU . Then the following holds P̂-almost surely. For any

semi-infinite geodesic x0,∞

lim
n→∞

xn · e1
|xn|1 ≥ ξ · e1 implies that xn · e1 ≥ x

x0, t, ξ ,−
n · e1 for all n ≥ 0

(4.7)

and

lim
n→∞

xn · e1
|xn|1 ≤ ξ · e1 implies that xn · e1 ≤ xx0, t̄, ξ ,+

n · e1 for all n ≥ 0.

(4.8)

(b) Fix amaximal line segment [ξ, ξ ] onwhich gpp is linear and such that ξ ·e1 < ξ ·e1.
Assume ξ, ξ ∈ D . Then the following statement holds P̂-almost surely. Any semi-

infinite geodesic x0,∞ such that a limit point of xn/|xn|1 lies in [ξ, ξ ] satisfies

x
x0,t,ξ
n · e1 ≤ xn · e1 ≤ xx0,t̄,ξn · e1 for all n ≥ 0. (4.9)

Proof Part (a). We prove (4.7). (4.8) is proved similarly. Fix a sequence ζ� ∈ D such
that ζ� ·e1 ↗ ξ ·e1 so that, in particular, ξ /∈ Uζ�

. The good event of full P̂-probability

is the one on which xx0,t,ζ�

0,∞ is Uζ�
-directed (Theorem 4.3), xx0,t,ζ�

0,∞ is the leftmost
geodesic between any two of its points (Lemma 4.1(b) applied to cocycle Bζ�) and

xx0,t,ζ�

0,∞ → x
x0,t,ξ ,−
0,∞ (Lemma 4.2).

By the leftmost property, if xx0,t,ζ�

0,∞ ever goes strictly to the right of x0,∞, these
two geodesics cannot touch again at any later time. But by virtue of the limit points,
xx0,t,ζ�
n · e1 < xn · e1 for infinitely many n. Hence xx0,t,ζ�

0,∞ stays weakly to the left of
x0,∞. Let � → ∞.

Part (b) is proved similarly. The differentiability assumption implies that the geo-

desic x
x0,t,ξ
0,∞ can be approached from the left by geodesics xx0,t,ζ�

0,∞ such that ξ /∈ Uζ�
.
��

The next result concerns coalescence of cocycle geodesics {xu,t,ξ,±
0,∞ : u ∈ Z

2} for
fixed t,±, and ξ ∈ riU . We can consider a random, stationary tie-breaking function
t : Ω̂ × Z

2 → {e1, e2} that satisfies

t(ω̂, x) = t(Tx ω̂, 0) ∀x ∈ Z
2, P̂-almost surely. (4.10)
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Theorem 4.5 Fix a tie-breaking function t that satisfies (4.10) and fix ξ ∈ riU . Then
P̂-almost surely, for all u, v ∈ Z

2, there exist n,m ≥ 0 such that xu,t,ξ,−
n,∞ = xv,t,ξ,−

m,∞ ,
with a similar statement for +.

Theorem 4.5 is proved by adapting the argument of [31], originally presented for
first passage percolation, and by utilizing the independence property in Theorem3.3(i).
Briefly, the idea is the following. By stationarity the assumption of two nonintersecting
geodesics implies we can find at least three. A local modification of the weights turns
the middle geodesic of the triple into a geodesic that stays disjoint from all geodesics
that emanate from sufficiently far away. By stationarity at least δL2 such disjoint
geodesics emanate from an L × L square. This gives a contradiction because there are
only 2L boundary points for these geodesics to exit through. Details can be found in
Appendix A of the arXiv preprint [22] of this paper.

The coalescence result above rules out the existence of doubly infinite cocycle
geodesics (a.s. for a given cocycle). The following theorem gives the rigorous state-
ment. Its proof is given at the end of the section and is based again on a lack-of-space
argument, similar to the proof of Theorem 6.9 in [15].

Theorem 4.6 Let t be a stationary tie-breaker as in (4.10) and ξ ∈ riU . Then P̂-
almost surely, for all u ∈ Z

2, there exist at most finitely many v ∈ Z
2 such that xv,t,ξ,−

0,∞
goes through u. The same statement holds for +.

It is known that, in general, uniqueness of geodesics cannot hold simultaneously
for all directions. In our development this is a consequence of Theorem 5.3 below. As
a step towards uniqueness of geodesics in a given direction, the next lemma shows
that continuity of the distribution of ω0 prevents ties in (3.3). (The construction of the
cocycles implies, through equation (7.6) in [23], that variables Bξ

±(x, x + ei ) have
continuous marginal distributions. Here we need a property of the joint distribution.)
Consequently, for a given ξ, P̂-almost surely geodesics xu,t,ξ,±

0,∞ do not depend on t.

Lemma 4.7 Assume that P{ω0 ≤ r} is a continuous function of r ∈ R. Fix ξ ∈ riU .
Then for all u ∈ Z

2,

P̂{Bξ
+(u, u + e1) = Bξ

+(u, u + e2)} = P̂{Bξ
−(u, u + e1) = Bξ

−(u, u + e2)} = 0.

Proof Due to shift invariance it is enough to prove the claim for u = 0. We work with
the + case, the other case being similar.

Assume by way of contradiction that the probability in question is positive. By

Theorem 4.5, xe2,t̄,ξ,+
0,∞ and xe1,t̄,ξ,+

0,∞ coalesce with probability one. Hence there exists
v ∈ Z

2 and n ≥ 1 such that

P
{
Bξ

+(0, e1) = Bξ
+(0, e2), x

e1,t̄,ξ,+
n = xe2,t̄,ξ,+

n = v
}

> 0.

Note that if Bξ
+(0, e1) = Bξ

+(0, e2) then both are equal toω0. Furthermore, by Lemma
4.1(a) we have
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Bξ
+(e1, v) =

n−1∑

k=0

ω(xe1,t̄,ξ,+
k ) and Bξ

+(e2, v) =
n−1∑

k=0

ω(xe2,t̄,ξ,+
k ).

(For aesthetic reasons we wrote ω(x) instead of ωx .) Thus

ω0 +
n−1∑

k=0

ω(xe1,t̄,ξ,+
k ) = Bξ

+(0, e1) + Bξ
+(e1, v) = Bξ

+(0, v)

= Bξ
+(0, e2) + Bξ

+(e2, v) = ω0 +
n−1∑

k=0

ω(xe2,t̄,ξ,+
k ).

The fact that this happens with positive probability contradicts the assumption that ωx

are i.i.d. and have a continuous distribution. ��
Proof of Theorem 2.1 Part (i). The existence ofUξ±-directed semi-infinite geodesics

for ξ ∈ riU follows by fixing t and taking geodesics xu,t,ξ,±
0,∞ from Theorem 4.3. For

ξ = ei semi-infinite geodesics are simply x0,∞ = (x0 + nei )n≥0.
Let D0 be a dense countable subset of D . Let Ω̂0 be the event of full P̂-probability

on which event (4.4) holds and Lemma 4.4(a) holds for each u ∈ Z
2 and ζ ∈ D0. We

show that on Ω̂0, every semi-infinite geodesic is Uξ -directed for some ξ ∈ U .
Fix ω̂ ∈ Ω̂0 and an arbitrary semi-infinite geodesic x0,∞. Define ξ ′ ∈ U by

ξ ′ · e1 = lim
n→∞

xn · e1
|xn|1 .

Let ξ = ξ ′ = the left endpoint of Uξ ′ . We claim that x0,∞ is Uξ = [ξ, ξ ]-directed. If
ξ ′ = e2 then xn/|xn|1 → e2 and Uξ = {e2} and the case is closed. Suppose ξ ′ 	= e2.

The definition of ξ implies that ξ ′ ∈ Uξ+ and so

lim
n→∞

xn · e1
|xn|1 = ξ ′ · e1 ≤ ξ · e1.

From the other direction, for any ζ ∈ D0 such that ζ · e1 < ξ ′ · e1 we have

lim
n→∞

xn · e1
|xn|1 > ζ · e1

which by (4.7) implies xn · e1 ≥ x
x0,t,ζ
n · e1. Then by (4.4)

lim
n→∞

xn · e1
|xn|1 ≥ lim

n→∞
x
x0,t,ζ
n · e1
|xx0,t,ζn |1

≥ ζ · e1

where ζ = the left endpoint of Uζ . It remains to observe that we can take ζ · e1
arbitrarily close to ξ · e1. If ξ · e1 < ξ ′ · e1 then we take ξ · e1 < ζ · e1 < ξ ′ · e1
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in which case ζ = ξ and ζ = ξ . If ξ = ξ ′ then also ξ = ξ ′ = ξ . In this case, as

D0 � ζ ↗ ξ,∇gpp(ζ ) approaches but never equals ∇gpp(ξ−) because there is no flat
segment of gpp adjacent to ξ on the left. This forces both ζ and ζ to converge to ξ .

Part (ii). If gpp is strictly concave then Uξ = {ξ} for all ξ ∈ riU and (i) ⇒ (ii).
Part (iii). By Theorem 3.3(iii) there is a single cocycle Bζ simultaneously for all

ζ ∈ [ξ, ξ ]. Consequently cocycle geodesics x
x0,t,ξ
0,∞ and xx0,t,ξ0,∞ coincide for any given

tie breaking function t. On the event of full P-probability on which there are no
ties between Bζ (x, x + e1) and Bζ (x, x + e2) the tie breaking function t makes no
difference. Hence the left and right-hand side of (4.9) coincide. Thus there is no room
for two [ξ, ξ ]-directed geodesics from any point. Coalescence comes from Theorem
4.5. The statement about the finite number of ancestors of a site u comes fromTheorem
4.6. ��
Proof of Theorem 2.4 By Theorem 3.4 limit B from (2.12) is now the cocycle Bξ .
Part (i) follows from Lemma 4.1.

Part (ii). Take sequences ηn, ζn ∈ riU with ηn · e1 < ξ · e1 ≤ ξ · e1 < ζn · e1
and ζn → ξ, ηn → ξ . Consider the full measure event on which Theorem 3.4 holds
for each ζn and ηn with sequences vm = �mζn� and �mηn�, and on which continuity
(3.6) and (3.7) holds as ζn → ξ, ηn → ξ . In the rest of the proof we drop the index n
from ζn and ηn .

We prove the case of a semi-infinite geodesic x0,∞ that satisfies x0 = 0 and (2.15).
For large m, �mη · e1� < xm · e1 < �mζ · e1�.

Consider first the case x1 = e1. If there exists a geodesic from 0 to �mζ� that goes
through e2, then this geodesic would intersect x0,∞ and thus there would exist another
geodesic that goes from 0 to �mζ� passing through e1. In this case we would have
Ge1,�mζ� = Ge2,�mζ�. On the other hand, if there exists a geodesic from 0 to �mζ�
that goes through e1, then we would have Ge1,�mζ� ≥ Ge2,�mζ�. Thus, in either case,
we have

G0,�mζ� − Ge1,�mζ� ≤ G0,�mζ� − Ge2,�mζ�.

Taking m → ∞ and applying Theorem 3.4 we have Bζ
+(0, e1) ≤ Bζ

+(0, e2). Taking

ζ → ξ and applying (3.6) we have Bξ
+(0, e1) ≤ Bξ

+(0, e2). Since ξ and ξ are points of

differentiability of gpp, we have B
ξ
+ = Bξ . Consequently, we have shown Bξ (0, e1) ≤

Bξ (0, e2). Since Bξ recovers the weights (3.3), the first step x1 = e1 of x0,∞ satisfies
ω0 = Bξ (0, e1) ∧ Bξ (0, e2) = Bξ (0, x1).

When x1 = e2 repeat the same argument with η in place of ζ to get Bξ (0, e2) ≤
Bξ (0, e1). This proves the theorem for the first step of the geodesic and that is enough.

Part (iii). We prove the case i = 0. The statement holds if Bξ (0, e1) = Bξ (0, e2),
since then both are equal to ω0 by recovery (3.1). If ω0 = Bξ (0, e1) < Bξ (0, e2) then
convergence (2.12) implies that for n large enough Ge1,vn > Ge2,vn . In this case any
maximizing path from 0 to vn will have to start with an e1-step and the claim is again
true. The case Bξ (0, e1) > Bξ (0, e2) is similar. ��
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Proof of Theorem 2.2 Part (i). ξ = ξ implies Uξ− ⊂ Uξ− and, by Theorem 4.3,

x
u, t, ξ ,−
0,∞ = x

u, t, ξ ,−
0,∞ is Uξ−-directed. Lemma 4.4(a) implies that any Uξ−-directed

semi-infinite geodesic out of u ∈ Z
2 stays to the right of x

u, t, ξ ,−
0,∞ . Thus x

u, t, ξ ,−
0,∞ is

the leftmostUξ−-directed geodesic out of u. The coalescence claim follows now from
Theorem 4.5 and the statement about the finite number of ancestors of a site u comes
from Theorem 4.6. The case ξ = ξ is similar. Part (i) is proved.

Part (ii). It is enough to work with the case u = 0. The differentiability assumption
implies Bξ

± = Bξ . We will thus omit the ± from the Bξ -geodesics notation. Take
vn as in (2.9). Consider an up-right path y0,∞ that is a limit point of the sequence of
leftmost geodesics from 0 to vn . By this we mean that along this subsequence, for any
m ∈ N the initial m-step segment of the leftmost geodesic from 0 to vn equals y0,m
for n large enough. By Theorem 2.4(iii) we have almost surely Bξ (yi , yi+1) = ωyi
for all i ≥ 0. Furthermore, for any n ∈ N, y0,n is the leftmost geodesic between 0
and yn . We will next show that whenever Bξ (yi , yi + e1) = Bξ (yi , yi + e2) we have
yi+1 = e2. This then implies that y0,∞ = x0,t,ξ0,∞ and proves part (ii).

It is enough to discuss the case of a tie at y0 = 0.Assume that Bξ (0, e1) = Bξ (0, e2)

but y1 = e1. By Theorem 4.5, xe2,t̄,ξ0,∞ coalesces with xe1,t̄,ξ0,∞ . On the other hand, since
we already know that y1,∞ follows minimal Bξ -gradients we know that it must remain

to the left of xe1,t̄,ξ0,∞ . This shows that xe2,t̄,ξ0,∞ intersects y1,∞ at some point z on level

n = |z|1. But now the path ȳ0,n with ȳ0 = 0 and ȳ1,n = xe2,t̄,ξ0,n−1 has last passage
weights

ω0 + Ge2,z = ω0 + Bξ (e2, z) = Bξ (0, e2) + Bξ (e2, z) = Bξ (0, z) ≥ G0,z

and is hence a geodesic. (The first equality is because xe2,t̄,ξ0,n−1 is a cocycle geodesic,
the second comes from weights recovery (3.1) and the tie at 0, the third is additivity
of cocycles, and the last equality is again weights recovery (3.1).) This contradicts the
fact that y0,n is the leftmost geodesic from 0 to yn = z.

We have thus shown that y0,∞ = x0,t,ξ0,∞ . A similar statement works for the rightmost
geodesics. Part (ii) is proved. ��

Proof of Theorem 4.6 Let Cu(ω̂) = {v ∈ Z
2 : xv,t,ξ,−

0,∞ goes through u}. The goal

is P̂{|Cu | = ∞} = 0. Assume the contrary. Since Cu is determined by the ergodic
processes (3.2), there is then a positive density of points u ∈ Z

2 with |Cu | = ∞.
Consider the tree G made out of the union of geodesics xx,t,ξ,−

0,∞ for x ∈ Z
2. (The

graph is a tree because once geodesics intersect they merge. It is connected due to
coalescence given by Theorem 4.5.) Given u1, u2 ∈ Z

2 with |Cu1 | = |Cu2 | = ∞
consider the point where xu1,t,ξ,−

0,∞ and xu2,t,ξ,−
0,∞ coalesce. Removing this point from

the tree splits the tree into three infinite components. Call such a point a junction
point. At each junction point u two infinite admissible paths meet for the first time at
u, and each path, as a cocycle geodesic, follows the minimal gradients of Bξ

− and uses
tie-breaking rule t. We call these the backward geodesics associated to u.
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By shift-invariance and the argument above we have for all u ∈ Z
2

P̂{u is a junction point} = P̂{0 is a junction point} > 0. (4.11)

Then the ergodic theorem implies that there is a positive density of junction points
in Z

2. We give a lack of space argument that contradicts this.
Let J be the set of junction points in the box [1, L]2 together with those points on

the south and west boundaries {kei : 1 ≤ k ≤ L , i = 1, 2}where a backward geodesic
from a junction point first hits the boundary. Decompose J into finite binary trees by
declaring that the two immediate descendants of a junction point are the two closest
points on its two backward geodesics that are members of J . Then the leaves of these
trees are exactly the points on the boundary and the junction points are interior points
of the trees. A finite binary tree has more leaves than interior points. Consequently,
there cannot bemore than 2L+1 junction points inside [1, L]2. This contradicts (4.11)
and proves the theorem. ��

5 Competition interface

This section proves the results of Sect. 2.6. As before, we begin by studying the
situation on the extended space Ω̂ with the help of the cocycles Bζ

± of Theorem 3.3.

Lemma 5.1 Define Be1− and Be2+ as the monotone limits of Bζ
± when ζ → ei , i = 1, 2

respectively. Then P̂-almost surely Be1− (0, e1) = Be2+ (0, e2) = ω0 and Be1− (0, e2) =
Be2+ (0, e1) = ∞.

Proof The limits exist due to monotonicity (3.5). By (3.3) Be1− (0, e1) ≥ ω0 almost
surely. Dominated convergence and (3.4) give the limit

Ê[Be1− (0, e1)] = lim
ζ→e1

Ê[Bζ
±(0, e1)] = lim

ζ→e1
e1 · ∇gpp(ζ±) = Ê[ω0].

The last equality is a consequence of (2.8) (see Lemma 4.1 and equations (4.12)–(4.13)
in [23]). Now Be1− (0, e1) = ω0 almost surely.

Additivity (Definition 3.1(c)) and recovery (3.3) are satisfied by Be1− and imply

Be1− (ne1, ne1 + e2)

= ωne1 + (
Be1− ((n + 1)e1, (n + 1)e1 + e2) − Be1− (ne1 + e2, (n + 1)e1 + e2)

)+

= ωne1 + (
Be1− ((n + 1)e1, (n + 1)e1 + e2) − ωne1+e2

)+
.

The second equality is from the just proved identity Be1− (x, x + e1) = ωx .
Repeatedly dropping the outer +-part and applying the same formula inductively

leads to

Be1− (0, e2) ≥ ω0 +
n∑

i=1

(ωie1 − ω(i−1)e1+e2)

+ (
Be1− ((n + 1)e1, (n + 1)e1 + e2) − ωne1+e2

)+
.
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Since the summands are i.i.d. with mean 0, taking n → ∞ gives Be1− (0, e2) = ∞
almost surely. ��
Lemma 5.2 Fix ξ ∈ (riU )�D and a tie-breaker t that satisfies (4.10). With
P̂-probability one, for any u ∈ Z

2 geodesics xu,t,ξ,+
0,∞ and xu,t,ξ,−

0,∞ eventually sepa-
rate.

Proof Let Au = {xu,t,ξ,+
0,∞ = xu,t,ξ,−

0,∞ }. We want P̂(A0) = 0. Assume the contrary.

Fix ζ ∈ riU . P̂(A0) > 0 and stationarity imply that with positive probability there
exists a random sequence un = �knζ� such that kn → ∞ and Aun holds for each n.
Furthermore, for each such un we know from Theorem 4.5 that xu0,t,ξ,+

0,∞ = xu0,t,ξ,−
0,∞

and xun ,t,ξ,+
0,∞ = xun ,t,ξ,−

0,∞ coalesce at some random point zn . By the additivity and
(4.1) we then have

Bξ
+(u0, un) = Bξ

+(u0, zn) − Bξ
+(un, zn) = Gu0,zn − Gun ,zn

= Bξ
−(u0, zn) − Bξ

−(un, zn) = Bξ
−(u0, un).

(5.1)

By recovery (3.3) the conditions of Theorem A.1 are satisfied and because of (3.4) we
have

lim
n→∞

Bξ
+(u0, un) − ∇gpp(ξ+) · (un − u0)

|un|1
= 0 = lim

n→∞
Bξ

−(u0, un) − ∇gpp(ξ−) · (un − u0)

|un|1 .

This and (5.1) lead to ∇gpp(ξ−) · ζ = ∇gpp(ξ+) · ζ . Since ζ is arbitrary we get
∇gpp(ξ−) = ∇gpp(ξ+), which contradicts the assumption on ξ . ��

Now assume that ω0 has a continuous distribution. By Lemma 4.7 we can omit t
from the cocycle geodesics notation and write xu,ξ,±

0,∞ .
Next we use the cocycles to define a random variable ξ∗ on Ω̂ that represents the

asymptotic direction of the competition interface. By Lemma 4.7, with P̂-probability
one, Bξ

±(0, e1) 	= Bξ
±(0, e2) for all rational ξ ∈ riU . Furthermore, monotonicity

(3.5) gives that

Bζ
+(0, e1) − Bζ

+(0, e2) ≤ Bζ
−(0, e1) − Bζ

−(0, e2) ≤ Bη
+(0, e1) − Bη

+(0, e2)

when ζ · e1 > η · e1. Lemma 5.1 implies that Bζ
±(0, e1)− Bζ

±(0, e2) converges to −∞
as ζ → e1 and to ∞ as ζ → e2. Thus there exists unique ξ∗(ω̂) ∈ riU such that for
rational ζ ∈ riU ,

Bζ
±(ω̂, 0, e1) < Bζ

±(ω̂, 0, e2) if ζ · e1 > ξ∗(ω̂) · e1
and Bζ

±(ω̂, 0, e1) > Bζ
±(ω̂, 0, e2) if ζ · e1 < ξ∗(ω̂) · e1.

(5.2)
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For the next theorem on the properties of ξ∗, recall Uξ∗(ω̂) = [ξ∗(ω̂), ξ∗(ω̂)] from
(2.7).

Theorem 5.3 Assume P{ω0 ≤ r} is continuous in r . Then on the extended space
(Ω̂, Ŝ, P̂) of Theorem 3.3 the random variable ξ∗(ω̂) ∈ riU defined by (5.2) has the
following properties.

(i) P̂-almost surely, for every z ∈ Z
2, there exists a Uξ∗(Tz ω̂)−-directed geodesic out

of z that goes through z+ e2 and aUξ∗(Tz ω̂)+-directed geodesic out of z that goes
through z + e1. The two geodesics intersect only at their starting point z.

(ii) The following holds P̂-almost surely. Let x ′
0,∞ and x ′′

0,∞ be any geodesics out of
0 with

lim
n→∞

x ′
n · e1
n

< ξ∗(ω̂) and lim
n→∞

x ′′
n · e1
n

> ξ∗(ω̂). (5.3)

Then x ′
1 = e2 and x ′′

1 = e1.
(iii) ξ∗ is almost surely an exposed point (see (2.3) for the definition). Furthermore,

P̂{ω̂ : ξ∗(ω̂) = ξ} > 0 if and only if ξ ∈ (riU )�D .
(iv) Fix u ∈ Z

2.
(a) Let ζ, η ∈ riU be such that ζ ·e1 < η ·e1 and∇gpp(ζ+) 	= ∇gpp(η−). Then

for P̂-almost every ω̂ there exists z ∈ u + Z
2+ such that ξ∗(Tzω̂) ∈ ]ζ, η[.

(b) Let ξ ∈ (riU )�D . Then for P̂-almost every ω̂ there exists z ∈ u + Z
2+ such

that ξ∗(Tzω̂) = ξ .
The point z can be chosen so that, in both cases (a) and (b), there are two geodesics
out of u that split at this z and after that never intersect, and of these two geodesics
the one that goes through z + e2 is Uξ∗(Tz ω̂)−-directed, while the one that goes
through z + e1 is Uξ∗(Tz ω̂)+-directed.

Proof Fix a (possibly ω̂-dependent) z ∈ Z
2. Define

B∗+(ω̂, x, y) = lim
η·e1↘ξ∗(Tz ω̂)·e1

Bη
±(ω̂, x, y)

and B∗−(ω̂, x, y) = lim
ζ ·e1↗ξ∗(Tz ω̂)·e1

Bζ
±(ω̂, x, y).

(5.4)

We have to keep the B∗± distinction because the almost sure continuity statement (3.7)
does not apply to the random direction ξ∗. In any case, B∗± are additive (Definition
3.1(c)) and recover weights ωx = mini=1,2 B∗±(ω̂, x, x + ei ). From (5.2) and station-
arity (Definition 3.1(b)) we have

B∗+(z, z + e1) ≤ B∗+(z, z + e2) and B∗−(z, z + e1) ≥ B∗−(z, z + e2). (5.5)

Fix any two tie-breaking rules t+ and t− such that t+(z) = e1 and t−(z) = e2.
By Lemma 4.1 and (5.5) there exists a geodesic from z through z + e1 (by following
minimal B∗+ gradients and using rule t+) and another through z + e2 (by following
minimal B∗− gradients and using rule t−). These twogeodesics cannot coalesce because
ω0 has a continuous distribution.
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Let ζ · e1 < ξ∗(Tzω̂) · e1. By the limits in (5.4) and monotonicity (3.5),

Bζ
+(ω̂, x, x + e1) ≥ B∗−(ω̂, x, x + e1) ≥ Bξ∗(Tz ω̂)

− (ω̂, x, x + e1)

and Bζ
+(ω̂, x, x + e2) ≤ B∗−(ω̂, x, x + e2) ≤ Bξ∗(Tz ω̂)

− (ω̂, x, x + e2).

These inequalities imply that the geodesics that follow the minimal gradients of B∗−
stay to the right of xz,ζ,+

0,∞ and to the left of xz,t
−,ξ∗(Tz ω̂),−

0,∞ . By Theorem 4.3 these latter
geodesics areUζ+- andUξ∗(Tz ω̂)−-directed, respectively. Taking ζ → ξ∗(Tzω̂) shows
the B∗−-geodesics areUξ∗(Tz ω̂)−-directed. A similar argument gives that B∗+-geodesics
are Uξ∗(Tz ω̂)+-directed. Part (i) is proved.

In part (ii) we prove the first claim, the other claim being similar. The assumption
allows us to pick a rational η ∈ riU such that lim x ′

n · e1/n < η · e1 ≤ η · e1 < ξ∗ · e1.
Since ω0 has a continuous distribution and geodesic x

0,η,−
0,∞ isUη−-directed, geodesic

x ′
0,∞ has to stay always to the left of it. (5.2) implies x0,η,−

1 = e2. Hence also x1 = e2.
The claim is proved.

For part (iii) fix first ξ ∈ D , which implies Bξ
± = Bξ . By Lemma 4.7, Bξ (0, e1) 	=

Bξ (0, e2) almost surely. Let ζ · e1 ↘ ξ · e1 along rational points ζ ∈ riU . By (3.6),
Bζ

±(0, ei ) → Bξ (0, ei ) a.s. Then on the event Bξ (0, e1) > Bξ (0, e2) there almost

surely exists a rational ζ such that ζ · e1 > ξ · e1 and Bζ
±(0, e1) > Bζ

±(0, e2). By (5.2)
this forces ξ∗ · e1 ≥ ζ · e1 > ξ · e1. Similarly on the event Bξ (0, e1) < Bξ (0, e2) we
have almost surely ξ∗ · e1 < ξ · e1. The upshot is that P(ξ∗ = ξ) = 0.

Now fix ξ ∈ (riU )�D . By Lemma 5.2 there exists a z such that with positive
probability geodesics x0,ξ,±

0,∞ separate at z. This separation implies that Bξ
−(z, z+e2) <

Bξ
−(z, z + e1) and Bξ

+(z, z + e1) < Bξ
+(z, z + e2), which says that ξ∗(Tzω̂) = ξ and

thus ξ is an atom of ξ∗. We have proved the second statement in part (iii).
The non-exposed points of riU consist of open linear segments of gpp and the

endpoints of these segments that lie inD . Consider a segment [ζ, η] ⊂ riU on which
gpp is linear. Theorem 3.3(iii) says Bζ

+ = Bξ = Bη
− for all ξ ∈ ]ζ, η[ . Hence the

inequalities in (5.2) go the same way throughout the segment and therefore ξ∗ ∈ ]ζ, η[
has zero probability. Points in D were taken care of above. Since there are at most
countably many linear segments, the first claim in part (iii) follows.

Part (iv). Assume first ζ · e1 < η · e1.Uζ+ 	= Uη− and directedness (Theorem 4.3)

force the cocycle geodesics xu,η,−
0,∞ and xu,ζ,+

0,∞ to eventually separate. This is clear if

ζ 	= η because thenUζ+ andUη− are disjoint. If, on the other hand, ζ = η = ξ , then
∇gpp(ξ−) = ∇gpp(ζ+) and ∇gpp(ξ+) = ∇gpp(η−). By Theorem 3.3(iii) we have

xu,ζ,+
0,∞ = xu,ξ,−

0,∞ and x0,η,−
u,∞ = xu,ξ,+

0,∞ . The separation claim then follows from Lemma
5.2.

Now that we know the two geodesics separate at some random point z we have
almost surely Bζ

+(z, z+e2) < Bζ
+(z, z+e1). By continuity (3.6) there is almost surely

a rational ζ ′ ∈ riU with ζ ′ ·e1 > ζ ·e1 such that Bζ ′
+ (z, z+e2) < Bζ ′

+ (z, z+e1). Now
we have ζ ·e1 < ζ ′ ·e1 ≤ ξ∗(Tzω̂) ·e1. A similar argument shows η ·e1 > ξ∗(Tzω̂) ·e1.
Thus ξ∗(Tzω̂) ∈ ]ζ, η[.
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Recall B∗± and t± defined at and below (5.4) in terms of this z = z(ω̂). Consider two
geodesics that start at u, follow minimal B∗+ and B∗− gradients, and use tie-breaking
rules t+ and t−, respectively. By monotonicity (3.5) the two geodesics have to stay
sandwiched between xu,ζ,+

0,∞ and xu,η,−
0,∞ and therefore must pass through z. Beyond z

these two geodesics are the ones discussed in the proof of part (i).
In case (b) with ξ ∈ (riU )�D , Lemma 5.2 gives the separation of xu,ξ,±

0,∞ at some
random z. Then ξ∗(Tzω̂) = ξ and the geodesics claimed in the theorem are directly
given by xu,ξ,±

0,∞ . ��
The next theorem identifies the asymptotic direction of the competition interface

ϕ = (ϕk)0≤k<∞ defined in Sect. 2.6.

Theorem 5.4 Assume P{ω0 ≤ r} is continuous in r .
(i) All limit points of the asymptotic velocity of the competition interface are in

Uξ∗(ω̂): for P̂-almost every ω̂

ξ∗(ω̂) · e1 ≤ lim
n→∞

n−1ϕn(ω) · e1 ≤ lim
n→∞ n−1ϕn(ω) · e1 ≤ ξ∗(ω̂) · e1. (5.6)

(ii) If gpp is differentiable at the endpoints of its linear segments then ξ∗ is S-
measurable and gives the asymptotic direction of the competition interface:
P̂-almost surely

lim
n→∞ n−1ϕn(ω) = ξ∗(ω̂). (5.7)

Proof By (5.2), if ζ ·e1 < ξ∗(ω̂) ·e1 < η ·e1, then x0,ζ,±
1 = e2 and x

0,η,±
1 = e1. Since

the path ϕ separates the geodesics that go through e1 and e2, it has to stay between
x0,ζ,+
0,∞ and x0,η,−

0,∞ . By Theorem 4.3 these geodesics are Uζ+ and Uη− directed, and
we have

ζ · e1 ≤ lim
n→∞

n−1ϕn · e1 ≤ lim
n→∞ n−1ϕn · e1 ≤ η · e1.

Claim (5.6) follows by taking ζ and η to ξ∗.
If gpp is differentiable at the endpoints of its linear segments, these endpoints are

not exposed. Since ξ∗ is exposed by Theorem 5.3(iii), we have ξ∗ = ξ∗ = ξ∗ and
(5.7) follows from (5.6). Furthermore, cocycles areS-measurable and hence so is ξ∗.

��
Proof of Theorem 2.6 Limit (2.17) is in (5.7). The fact that the limit lies in riU is in
the construction in the paragraph that contains (5.2), and the properties of the limit
are in Theorem 5.3 parts (iii) and (iv). ��
Proof of Theorem 2.8 Under the assumption of differentiability at endpoints of linear
segments, either Uξ equals {ξ} or Uξ has no exposed points. Hence, by Theorem
5.3(iii), almost surely Uξ∗ = {ξ∗} and ξ∗(Tx ω̂) 	= ξ implies that ξ∗(Tx ω̂) /∈ Uξ .
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Consequently one of the cases in (5.3) covers simultaneously allUξ -directed geodesics
in environment Tx ω̂ and no separation at x can happen for such geodesics. By Theorem
2.1(i) every geodesic isUξ -directed for some ξ ∈ U .Onedirection in part (i) is proved.
The other direction comes from Theorem 5.3(i).

Part (ii) comes from part (i) and Theorem 5.3(iv). ��

As mentioned at the end of Sect. 2.6, if P{ω0 ≤ r} is not continuous in r , we have
competition interfaces ϕ(l) and ϕ(r) for the trees of leftmost and rightmost geodesics.
Their limiting directions ξ

(r)∗ (ω̂), ξ
(l)∗ (ω̂) ∈ riU are defined by

Bζ
±(ω̂, 0, e1) > Bζ

±(ω̂, 0, e2) if ζ · e1 < ξ(r)∗ (ω̂) · e1,
Bζ

±(ω̂, 0, e1) = Bζ
±(ω̂, 0, e2) if ξ (r)∗ (ω̂) · e1 < ζ · e1 < ξ(l)∗ (ω̂) · e1

and Bζ
±(ω̂, 0, e1) < Bζ

±(ω̂, 0, e2) if ζ · e1 > ξ(l)∗ (ω̂) · e1.
(5.8)

With this definition limit (5.6) is valid also with superscripts (l) and (r). Consequently
n−1ϕ

(a)
n (ω) → ξ

(a)∗ (ω̂) a.s. for a ∈ {l, r} under the assumption that gpp is strictly
concave.

6 Exactly solvable models

We derive here (2.18) for the distributions of ξ
(r)∗ and ξ

(l)∗ from definition (5.8). By
Sections 3.1 and 7.1 of [23], B(a,1−a)(0, e1) and B(a,1−a)(0, e2) are independent geo-
metric random variables with means

E[Bξ (0, e j )] = E(ω0) + σ
√

ξ · e3− j/ξ · e j , j = 1, 2.

The calculation for ξ
(r)∗ goes

P{ξ (r)∗ · e1 > a} = P{B(a,1−a)(0, e1) > B(a,1−a)(0, e2)}
=

√
(m0 − 1)(1 − a)√

m0a + √
(m0 − 1)(1 − a)

from which the first formula of (2.18) follows. Similar computation for ξ
(l)∗ .
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A Auxiliary technical results

Cocycles satisfy a uniformergodic theorem.The following is a special case ofTheorem
9.3 of [24]. Note that a one-sided bound suffices for a hypothesis. Recall Definition
3.1 of stationary L1(P) cocycles. Let h(B) ∈ R

2 denote the vector that satisfies

E[B(0, ei )] = −h(B) · ei for i ∈ {1, 2}.

Theorem A.1 Assume P is ergodic under the group {Tx }x∈Z2 . Let B be a stationary
L1(P) cocycle. Assume there exists a function V such that for P-a.e. ω

lim
ε↘0

lim
n→∞ max

x :|x |1≤n

1

n

∑

0≤k≤εn

|V (Tx+kei ω)| = 0 for i ∈ {1, 2} (A.1)

and maxi∈{1,2} B(ω, 0, ei ) ≤ V (ω). Then

lim
n→∞ max

x=z1+···+zn
z1,n∈{e1,e2}n

|B(ω, 0, x) + h(B) · x |
n

= 0 for P-a.e. ω.

If the process {V (Txω) : x ∈ Z
2} is i.i.d., then a sufficient condition for (A.1) is

E(|V |p) < ∞ for some p > 2 [40, Lemma A.4].
The following is a deterministic fact about gradients of passage times. This idea

has been used profitably in planar percolation, and goes back at least to [1,2]. See
Lemma 6.3 of [23] for a proof.

Lemma A.2 Fixω ∈ Ω . Let u, v ∈ Z
2+ be such that |u|1 = |v|1 ≥ 1 and u ·e1 ≤ v ·e1.

Then

G0,u − Ge1,u ≥ G0,v − Ge1,v and (A.2)

G0,u − Ge2,u ≤ G0,v − Ge2,v. (A.3)
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