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the shape has some regularity. In a sequel to this paper the cocycles are used to prove
results about semi-infinite geodesics and the competition interface.
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1 Introduction

We study nearest-neighbor directed last-passage percolation (LPP) on the lattice Z
2,

also called the corner growthmodel. Random i.i.d. weights {ωx }x∈Z2 are used to define
last-passage times Gx,y between lattice points x ≤ y (coordinatewise ordering) in Z

2

by

Gx,y = max
x�

n−1∑

k=0
ωxk (1.1)

where the maximum is over paths x� = {x = x0, x1, . . . , xn = y} that satisfy xk+1 −
xk ∈ {e1, e2} (up-right paths whose increments are standard basis vectors).

When ωx ≥ 0 this defines a growth model in the first quadrant Z
2+. Initially the

growing cluster is empty. The origin joins the cluster at time ω0. After both x − e1
and x − e2 have joined the cluster, point x waits time ωx to join. (However, if x is on
the boundary of Z

2+, only one of x − e1 and x − e2 is required to have joined.) The
cluster at time t is Ct = {x ∈ Z

2+ : G0,x +ωx ≤ t}. Our convention to exclude ωxn in
(1.1) forces the addition of ωx in the definition of Ct .

The interest is in the large-scale behavior of the model. This begins with the deter-
ministic limit gpp(ξ) = limn→∞ n−1G0,�nξ� for ξ ∈ R

2+ under a moment assumption.
It is expected but not yet proved that the shape function gpp is differentiable. Another
natural expectation is that the increment process {G0,vn+x−G0,vn : x ∈ Z

2} converges
in distribution as vn → ∞ in a particular direction. Distributionally equivalent is to
look at the limit of G0,vn − Gx,vn . For this last quantity we can expect even almost
sure convergence. The limit is called a Busemann function. This is one type of result
developed in the paper.

Here are some particulars of what follows, in relation to past work.
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Stationary cocycles and Busemann functions... 179

In [27] we derived variational formulas that characterize the limiting free energy
and limit shape for a general class of polymer models. The results cover both positive
temperature polymers and zero temperature percolation models, both point-to-point
and point-to-line models in all dimensions, and general admissible paths. Part of the
theory of [27] is a solution approach to one kind of variational formula in terms of
stationary cocycles.

In the present paper we construct these cocycles that minimize in the variational
formula for the particular case of the planar corner growth model with general i.i.d.
weights. The weights are assumed bounded from below and subject to a 2+ε moment
bound. The construction of the cocycles comes from the fixed points of the associated
queueing operator whose existence was proved by Mairesse and Prabhakar [41]. A
Markov process analogy of the cocycle construction is a simultaneous construction
of a given interacting Markov process for all invariant distributions, coupled through
common Poisson clocks that drive the dynamics. The i.i.d. weights ω are the analogue
of the clocks and the cocycles are the analogues of the initial state variables in stationary
distribution.

The construction of the cocycles does not require any regularity assumptions on
gpp. But the cocycles are indexed by the gradients∇gpp(ξ) as ξ varies across directions
in the first quadrant. Consequently at a corner ξ of the shape we get two cocycles that
correspond to ∇gpp(ξ±). We can prove the existence of the Busemann function in
directions ξ where ∇gpp(ξ±) coincide and can be approximated by gradients from
either side. Such directions are either (i) exposed points of differentiability of gpp or
(ii) lie on a linear segment of gpp whose endpoints are points of differentiability.

The companion paper [26] uses the cocycles constructed here to prove results about
the geodesics and the competition interface of the corner growth model.

Under some moment and regularity assumptions on the weights, the corner growth
model is expected to lie in the Kardar–Parisi–Zhang (KPZ) universality class. (For a
review of KPZ universality see [18].) The fluctuations of G0,�nξ� are expected to have
order of magnitude n1/3 and limit distributions from random matrix theory. When the
weights have exponential or geometric distribution the model is exactly solvable, and
it is possible to derive exact fluctuation exponents and limit distributions [10,37,38].
In these cases the cocycles we construct have explicit product form distributions.
The present paper can be seen as an attempt to begin development of techniques for
studying the corner growth model beyond the exactly solvable cases. As observed in
Remark 3.6 in Sect. 3.2 below, the case of a percolation cone is exceptional as it bears
somemarkers of weak disorder and hence cannot obey KPZ universality in all aspects.

Let us briefly touch upon the last 20 years of research on Busemann functions in
percolation. The only widely applied technique for proving the existence of Busemann
functions has come from the work of Newman et al. [34,39,45]. The approach uses
uniqueness and coalescence of directional geodesics and relies on a uniform curvature
assumption on the limit shape. This assumption cannot as yet be checked for general
first or last-passage percolation models. Still there are many interesting processes
with enough special features so that this approach can be carried out. The examples
are exactly solvable directed lattice percolation and models in Euclidean space built
on homogeneous Poisson processes.
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180 N. Georgiou et al.

Wütrich [56] gave an early application of the ideas of Newman et al. to construct
Busemann functions for directed last-passage percolation on Poisson points. Then
came the use of Busemann functions to study competition and coexistence by Cator,
Ferrari, Martin and Pimentel [15,23,24,46], existence, uniqueness and spatial mixing
of invariant distributions of an interacting system by Cator and Pimentel [14], the
construction of solutions to a randomly forced Burgers equation by Bakhtin, Cator,
andKhanin [7,8], and Pimentel’s [47] bounds on the speed of coalescence that improve
those of Wütrich [56]. Distinct from this line of work is Hoffman’s use of Busemann
functions to study competition under more general weight distributions [31,32].

Our approach to Busemann functions (and to geodesics in the sequel [26]) is the
very opposite. The limits are constructed a priori in the form of the cocycles. The
cocycles define stationary percolation models that can be coupled with the original
one. The coupling, ergodicity, and local regularity of the limit shape give the control
that proves the Busemann limits.

The use of Busemann functions or stationary cocycles to create auxiliary station-
ary percolation processes has been very fruitful. Hoffman applied this idea to study
geodesics and coexistence [31]. The stationary process became a tool for proving fluc-
tuation exponents in the seminal work of Cator and Groeneboom [13] on the planar
Poisson last-passage percolation model. The idea was adapted to the lattice case by
Balázs et al. [10], whose estimates have then been used by other works. The station-
ary process of Busemann functions was also profitably utilized in [14]. In an earlier
version of this technique the stationary process coupled to the percolation model was
an associated particle system [53,54].

The idea of deducing existence and uniqueness of stationary processes by studying
geodesic-like objects has also been used in random dynamical systems. For example,
[22] and its extensions [5,6,9,30,35] take this approach to produce invariant measures
for the Burgers equation with random forcing. This line of work has treated situations
where the space is compact or essentially compact. To make progress in the non-
compact case, the approach of Newman et al. was adopted again in [7,8], as mentioned
above.

The seminal results of Newman et al. on geodesics have recently been extended
by Damron and Hanson [19] by taking as starting point a weak subsequential limit
of Busemann functions. These weak Busemann limits of [19] can be regarded as a
counterpart of our stationary cocycles.

To generalize our results beyond i.i.d. weights and potentially to higher dimensions,
a possible strategy that avoids the reliance on queueing theory would be to develop
sufficient control on the gradientsGx,�nξ�−Gy,�nξ� (or their point-to-line counterparts)
to construct cocycles through weak limits as n→∞. This worked well for undirected
first-passage percolation in [19] because the gradients are uniformly integrable. Note
however that when {ωx } are only ergodic, the limiting shape can have corners and
linear segments, and can even be a finite polygon.

Organization of the paper Section 2 introduces the corner growth model. Section 3
states the existence theorem for Busemann functions under local regularity assump-
tions on the limit function gpp(ξ). The remainder of the paper does not rely on
properties of gpp beyond those known and stated in Sect. 2. Section 4 develops a
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Stationary cocycles and Busemann functions... 181

convex duality between directions or velocities ξ and tilts or external fields h that
comes from the relationship of the point-to-point and point-to-line percolation mod-
els. Section 5 states the existence and properties of the cocycles on which all the
results of the paper are based. The proof comes at the end of the paper in Sect. 7. The
cocycles are used to construct a stationary last-passage process (Sect. 5.2) and they
yield minimizers for the variational formulas that characterize the limit shapes (Sect.
5.3). Section 6 proves the existence of Busemann functions.

Two particular cases of the corner growth model are addressed separately: the
exactly solvable cases with geometric or exponential weights {ωx } (Sects. 3.1, 7.1),
and the percolation cone (Sect. 3.2). In the case of the percolation cone we can give
an alternative formula for the limiting Busemann function and we observe that the
centered Busemann function is a gradient. This is consistent with the percolation cone
situation being in weak disorder, as also indicated by the vanishing of the fluctuation
exponent for the point-to-line last-passage time.

We have organized the paper so that the results on Busemann functions lead and
the technicalities of cocycle construction are delayed towards the end. The reader
who wants to see each step fully proved before progressing further can go through
the material in the following order. (i) Basic definitions from Sects. 2 and 4. (ii) The
cocycle construction: Theorem 5.2 from Sect. 5.1 and its proof from Sect. 7. (iii) The
stationary LPP from Sect. 5.2, followed by Theorem 6.1 for Busemann functions and
its proof in Sect. 6. (iv) For minimizers of the variational formulas, Theorem 5.6 and
its proof from Sect. 5.3. (v) The rest is specialization under assumptions on the weights
or the limit shape.

A short Appendix states an ergodic theorem for cocycles proved in [28].

Notation and conventions R+ = [0,∞), Z+ = {0, 1, 2, 3, . . . }, N = {1, 2, 3, . . . }.
The standard basis vectors of R

2 are e1 = (1, 0) and e2 = (0, 1) and the �1-norm
of x ∈ R

2 is |x |1 = |x · e1| + |x · e2|. For u, v ∈ R
2 a closed line segment on R

2

is denoted by [u, v] = {tu + (1 − t)v : t ∈ [0, 1]}, and an open line segment by
]u, v[= {tu + (1 − t)v : t ∈ (0, 1)}. Coordinatewise ordering x ≤ y means that
x · ei ≤ y · ei for both i = 1 and 2. Its negation x 
≤ y means that x · e1 > y · e1
or x · e2 > y · e2. An admissible or up-right path x0,n = (xk)nk=0 on Z

2 satisfies
xk − xk−1 ∈ {e1, e2}.

The environment space is Ω = R
Z
2
whose elements are denoted by ω. Elements

of a larger product space Ω̂ = Ω ×Ω ′ are denoted by ω̂ = (ω, ω′). Parameter p > 2
appears in a moment hypothesis E[|ω0|p] <∞, while p1 is the probability of an open
site in an oriented site percolation process. X ∼ μ means that random variable X has
distribution μ.

D is the set of points of differentiability of gpp and E the set of exposed points of
differentiability. A statement that contains± or∓ is a combination of two statements:
one for the top choice of the sign and another one for the bottom choice.

2 Preliminaries on the corner growth model

This section presents assumptions, definitions, and notation used throughout the paper,
and states some known results.
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182 N. Georgiou et al.

2.1 Assumptions

The two-dimensional corner growth model is the last-passage percolation model on
the planar square lattice Z

2 with admissible steps R = {e1, e2}. Ω = R
Z
2
is the

space of environments or weight configurations ω = (ωx )x∈Z2 . The group of spatial
translations {Tx }x∈Z2 acts on Ω by (Txω)y = ωx+y for x, y ∈ Z

2. Let S denote the
Borel σ -algebra ofΩ . P is a Borel probability measure onΩ under which the weights
{ωx } are independent, identically distributed (i.i.d.) nondegenerate random variables
with a 2+ ε moment. Expectation under P is denoted by E. For a technical reason we
also assume P(ω0 ≥ c) = 1 for some finite constant c.

For future reference we summarize our standing assumptions in this statement:

P is i.i.d., E[|ω0|p] <∞ for some p > 2, σ 2 = Var(ω0) > 0, and

P(ω0 ≥ c) = 1 for some c > −∞.
(2.1)

Assumption (2.1) is valid throughout the paper and will not be repeated in every
statement. The constant

m0 = E(ω0)

will appear frequently. The symbol ω is reserved for these P-distributed i.i.d. weights,
also later when they are embedded in a larger configuration ω̂ = (ω, ω′).

Assumption P(ω0 ≥ c) = 1 is used explicitly only in Sect. 7 where we rely on
queueing theory. In that context ωx is a service time, and the results we quote have
been proved only for ωx ≥ 0. (The extension to ωx ≥ c is immediate.) The key point
is that if the queueing results are extended to general real-valued i.i.d. weights ωx

subject to the moment assumption in (2.1), everything in this paper is true for these
general real-valued weights.

2.2 Last-passage percolation

Given an environment ω and two points x, y ∈ Z
2 with x ≤ y coordinatewise, define

the point-to-point last-passage time by

Gx,y = max
x0,n

n−1∑

k=0
ωxk .

The maximum is over paths x0,n = (xk)nk=0 that start at x0 = x , end at xn = y with
n = |y − x |1, and have increments xk+1 − xk ∈ {e1, e2}. Call such paths admissible
or up-right.

Given a vector h ∈ R
2, an environment ω, and an integer n ≥ 0, define the n-step

point-to-line last-passage time with tilt (or external field) h by

Gn(h) = max
x0,n

{ n−1∑

k=0
ωxk + h · xn

}
. (2.2)
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Stationary cocycles and Busemann functions... 183

The maximum is over all admissible n-step paths that start at x0 = 0.
It is standard (see for example [43] or [49]) that under assumption (2.1), for P-

almost every ω, simultaneously for every ξ ∈ R
2+ and every h ∈ R

2, the following
limits exist:

gpp(ξ) = lim
n→∞ n−1G0,�nξ�, (2.3)

gpl(h) = lim
n→∞ n−1Gn(h). (2.4)

In the definition above integer parts are taken coordinatewise: �v� = (�a�, �b�) ∈ Z
2

for v = (a, b) ∈ R
2. A stronger result is also true: the shape theorem gives a uniform

limit (Theorem 5.1(i) of [43]):

lim
n→∞ n−1 max

x∈Z+2 :|x |1=n
|G0,x − gpp(x)| = 0 P-almost surely. (2.5)

Under assumption (2.1) gpp and gpl are finite nonrandom continuous functions.
In particular, gpp is continuous up to the boundary of R

2+. Furthermore, gpp is a
symmetric, concave, 1-homogeneous function on R

2+ and gpl is a convex Lipschitz
function on R

2. Homogeneity means that gpp(cξ) = cgpp(ξ) for ξ ∈ R
2+ and c ∈ R+.

By homogeneity, for most purposes it suffices to consider gpp as a function on the
convex hull U = [e1, e2] = {te1 + (1− t)e2 : 0 ≤ t ≤ 1} ofR. The relative interior
riU is the open line segment ]e1, e2[= {te1 + (1− t)e2 : 0 < t < 1}.

Decomposing according to the endpoint of the path and some estimation (Theorem
2.2 in [49]) give

gpl(h) = sup
ξ∈U
{gpp(ξ)+ h · ξ}. (2.6)

By convex duality for ξ ∈ riU

gpp(ξ) = inf
h∈R2
{gpl(h)− h · ξ}.

Let us say ξ ∈ riU and h ∈ R
2 are dual if

gpp(ξ) = gpl(h)− h · ξ. (2.7)

Very little is known in general about gpp beyond the soft properties mentioned
above. In the exactly solvable case, with ωx either exponential or geometric, we have
gpp(s, t) = (s + t)m0 + 2σ

√
st . The Durrett-Liggett flat edge result ([21], Theorem

3.3 below) tells us that this formula is not true for all i.i.d. weights. It does hold for
general weights asymptotically at the boundary [43]: gpp(1, t) = m0+2σ√t+o(√t )
as t ↘ 0.
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2.3 Gradients and convexity

Regularity properties of gpp play a role in our results, so we introduce notation for that
purpose. Let

D = {ξ ∈ riU : gpp is differentiable at ξ}.

To be clear, ξ ∈ D means that the gradient ∇gpp(ξ) exists in the usual sense of
differentiability of functions of several variables. At ξ ∈ riU this is equivalent to the
differentiability of the single variable function r �→ gpp(r, 1 − r) at r = ξ · e1/|ξ |1.
By concavity the set (riU )�D is at most countable.

A point ξ ∈ riU is an exposed point if

∃v ∈ R
2 such that ∀ζ ∈ riU �{ξ} : gpp(ζ ) < gpp(ξ)+ v · (ζ − ξ). (2.8)

The set of exposed points of differentiability of gpp is E = {ξ ∈ D : (2.8) holds}.
For ξ ∈ E , (2.8) is uniquely satisfied by v = ∇gpp(ξ). The condition for an exposed
point is formulated entirely in terms ofU because gpp is a homogeneous function and
therefore cannot have exposed points as a function on R

2+.
It is expected that gpp is differentiable on all of riU . But since this is not known,

our development must handle possible points of nondifferentiability. For this purpose
we take left and right limits on U . Our convention is that a left limit ξ → ζ on U
means that ξ · e1 increases to ζ · e1, while in a right limit ξ · e1 decreases to ζ · e1, with
ξ 
= ζ .

For ζ ∈ riU define one-sided gradient vectors ∇gpp(ζ±) by

∇gpp(ζ±) · e1 = lim
ε↘0

gpp(ζ ± εe1)− gpp(ζ )

±ε

and ∇gpp(ζ±) · e2 = lim
ε↘0

gpp(ζ ∓ εe2)− gpp(ζ )

∓ε
.

Concavity of gpp ensures the limits exist. ∇gpp(ξ±) coincide (and equal ∇gpp(ξ)) if
and only if ξ ∈ D . Furthermore, on riU ,

∇gpp(ζ−) = lim
ξ ·e1↗ζ ·e1

∇gpp(ξ±) and ∇gpp(ζ+) = lim
ξ ·e1↘ζ ·e1

∇gpp(ξ±). (2.9)

For ξ ∈ riU define maximal line segments on which gpp is linear,Uξ− for the left
gradient at ξ and Uξ+ for the right gradient at ξ , by

Uξ± = {ζ ∈ riU : gpp(ζ )− gpp(ξ) = ∇g(ξ±) · (ζ − ξ)}. (2.10)

Either or both segments can degenerate to a point. Let

Uξ = Uξ− ∪ Uξ+ = [ξ, ξ ] with ξ · e1 ≤ ξ · e1. (2.11)
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Uξ = ξ ξ

Uξ+

ζ ζζ

Uζ+ =Uζ =Uζ−

Fig. 1 Agraph of a concave function overU to illustrate the definitions. ζ , ζ and ζ are points of differentia-

bility while ξ = ξ and ξ are not.Uζ = Uζ = U
ζ
= [ζ , ζ ]. The red lines represent supporting hyperplanes

at ξ . The slope from the left at ξ is zero, and the horizontal red line touches the graph only at ξ . Hence
Uξ− = {ξ}. Points on the line segments [ζ , ζ ] and ]ξ, ξ [ are not exposed. E = riU �

([ζ , ζ ] ∪ [ξ, ξ ])

If ξ ∈ D then Uξ+ = Uξ− = Uξ , while if ξ /∈ D then Uξ+ ∩Uξ− = {ξ}. If ξ ∈ E
then Uξ = {ξ}. Figure 1 illustrates.

For ζ · e1 < η · e1 in riU , [ζ, η] is a maximal linear segment of gpp if ∇gpp exists
and is constant in ]ζ, η[ but not on any strictly larger open line segment in riU . Then
[ζ, η] = Uζ+ = Uη− = Uξ for any ξ ∈ ]ζ, η[. If ζ, η ∈ D we say that gpp is
differentiable at the endpoints of this maximal linear segment. This hypothesis will be
invoked several times.

2.4 Cocycles and variational formulas

The next definition is central to the paper.

Definition 2.1 (Cocycle) Ameasurable function B : Ω×Z
2×Z

2 → R is a stationary
L1(P) cocycle if it satisfies the following three conditions.

(a) Integrability: for each z ∈ {e1, e2}, E|B(0, z)| <∞.
(b) Stationarity: for P-a.e. ω and all x, y, z ∈ Z

2, B(ω, z+ x, z+ y) = B(Tzω, x, y).
(c) Additivity: forP-a.e.ω and all x, y, z ∈ Z

2, B(ω, x, y)+B(ω, y, z) = B(ω, x, z).

The space of stationary L1(P) cocycles on (Ω,S, P) is denoted by K (Ω). The
subspace K0(Ω) of centered stationary L1(P) cocycles consists of F ∈ K (Ω) such
that E[F(x, y)] = 0 for all x, y ∈ Z

2.

K0(Ω) is the L1(P) closure of gradients F(ω, x, y) = ϕ(Tyω)−ϕ(Txω), ϕ ∈ L1(P)

(see [50, Lemma C.3]). Our convention for centering a stationary L1 cocycle B is to
let h(B) ∈ R

2 denote the vector that satisfies

E[B(0, ei )] = −h(B) · ei for i ∈ {1, 2} (2.12)
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186 N. Georgiou et al.

and then define F ∈ K0(Ω) by

F(ω, x, y) = h(B) · (x − y)− B(ω, x, y). (2.13)

Cocycles appear as minimizers in variational formulas that describe the limits of
last-passage percolation models. In Theorems 3.2 and 4.3 in [27] we proved these
variational formulas: for h ∈ R

2

gpl(h) = inf
F∈K0(Ω)

P-ess sup
ω

max
i∈{1,2}{ω0 + h · ei + F(ω, 0, ei )} (2.14)

and for ξ ∈ riU

gpp(ξ) = inf
B∈K (Ω)

P-ess sup
ω

max
i∈{1,2}{ω0 − B(ω, 0, ei )− h(B) · ξ}. (2.15)

3 Results on Busemann functions

This section utilizes specialized assumptions either on the shape function gpp or on
the weights, in addition to the basic assumption (2.1). We state the theorem on the
existence of Busemann functions, both point-to-point and point-to-line. This theorem
is proved in Sect. 6. After the theorem we discuss two examples: the exactly solvable
case and the percolation cone.

Theorem 3.1 Fix two points ζ, η ∈ D such that ζ · e1 ≤ η · e1. Assume that either
(i) ζ = η = ξ ∈ E in which case ζ = η = ξ = ξ = ξ , or that

(ii) [ζ, η] is a maximal linear segment of gpp in which case [ζ, η] = [ξ, ξ ] for all
ξ ∈ [ζ, η].

Then there exists a stationary L1(P) cocycle {B(x, y) : x, y ∈ Z
2} and an event Ω0

with P(Ω0) = 1 such that the following holds for each ω ∈ Ω0. For each sequence
vn ∈ Z

2+ such that

|vn|1→∞ and ζ · e1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ η · e1, (3.1)

we have the limit

B(ω, x, y) = lim
n→∞

(
Gx,vn (ω)− Gy,vn (ω)

)
for x, y ∈ Z

2. (3.2)

Furthermore, if h = t (e1 + e2) − ∇gpp(ξ) for some t ∈ R and any (and hence all)
ξ ∈ [ζ, η], we have the limit

B(ω, 0, z)+ h · z = lim
n→∞

(
Gn(h)− Gn−1(h) ◦ Tz

)
for z ∈ {e1, e2}. (3.3)
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The mean of the limit is given by

∇gpp(ξ) = (
E[B(x, x + e1)] , E[B(x, x + e2)]

)
for all ξ ∈ [ζ, η]. (3.4)

To paraphrase the theorem, suppose ξ is an exposed point of differentiability of
gpp, or ξ lies on a maximal linear segment of gpp whose endpoints are points of
differentiability. Then a Busemann function Bξ exists in direction ξ in the sense
that Bξ (ω, x, y) equals the a.s. limit in (3.2) for any sequence vn/|vn|1 → ξ with
|vn|1→∞. Furthermore, the Bξ ’s match for points ξ on maximal linear segments of
gpp with endpoints inD . The condition on h in the theorem is exactly that h and ξ are
dual in the sense of (2.7).

We shall not derive the cocycle properties of B from the limit (3.2). Instead we
construct a family of cocycles on an extended space Ω̂ = Ω ×Ω ′ and show that one
of these cocycles equals the limit on the right of (3.2).

TheBusemann limits (3.2) can also be interpreted as convergence of the last-passage
process to a stationary last-passage process, described in Sect. 5.2.

Equation (3.4) was anticipated in [34] (see paragraph after the proof of Theorem
1.13) for Euclidean first passage percolation (FPP) where gpp(x, y) = c

√
x2 + y2. A

version of this formula appears also in Theorem 3.5 of [19] for lattice FPP.
The next theorem states that the Busemann functions found in Theorem 3.1 give

minimizing cocycles.

Theorem 3.2 Let ξ ∈ riU withUξ = [ξ, ξ ] defined in (2.11). Assume that ξ, ξ, ξ ∈
D . Let Bξ ∈ K (Ω) be the limit in (3.2) for any sequence vn that satisfies (3.1)
for ζ = ξ and η = ξ . We have h(Bξ ) = −∇gpp(ξ) by (3.4) and (2.12). Define
F(x, y) = h(Bξ ) · (x − y)− Bξ (x, y) as in (2.13).

(i) Let h = h(Bξ )+ (t, t) for some t ∈ R. Then for P-a.e. ω

gpl(h) = max
i∈{1,2}{ω0 + h · ei + F(ω, 0, ei )} = t. (3.5)

In other words, F is a minimizer in (2.14) and the essential supremum vanishes.
(ii) For P-a.e. ω

gpp(ξ) = max
i∈{1,2}{ω0 − Bξ (ω, 0, ei )− h(Bξ ) · ξ} = −h(Bξ ) · ξ. (3.6)

In other words, Bξ is a minimizer in (2.15) and the essential supremum vanishes.

The condition h = h(Bξ )+ (t, t) for some t ∈ R is equivalent to h dual to ξ . Every
h has a dual ξ ∈ riU as we show in Sect. 4. Consequently, if gpp is differentiable
everywhere on riU , each h has a minimizing cocycle F that satisfies (3.5) and is
obtained by centering a Busemann function. Theorem 3.2 is proved in Sect. 6.

The choice of i ∈ {1, 2} in (3.5) and (3.6) depends on ω and is related to the notion
of competition interface. This issue is addressed in the companion paper [26].

Borrowing from homogenization literature (see e.g. page 468 of [3]), aminimizer of
(2.14) that removes the essential supremum, that is, a mean zero cocycle that satisfies
(3.5), could be called a corrector.
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3.1 Exactly solvable models

We illustrate the results in the two exactly solvable cases: the distribution of the mean
m0 weights ωx is

exponential: P{ωx ≥ t} = e−t/m0 for t ≥ 0 with σ 2 = m2
0,

or geometric:P{ωx ≥ k} = (1− m−10 )k for k ∈ N with σ 2 = m0(m0 − 1).
(3.7)

Calculations behind the claims below are sketched in Sect. 7.1 after the connection
with queueing theory has been established.

For both cases in (3.7) the point-to-point limit function is

gpp(ξ) = m0(ξ · e1 + ξ · e2)+ 2σ
√

(ξ · e1)(ξ · e2) . (3.8)

In the exponential case this formula was first derived by Rost [52] (who presented
the model in its coupling with TASEP without the last-passage formulation) while
early derivations of the geometric case appeared in [16,36,54]. Convex duality (2.7)
becomes

ξ ∈ riU is dual to h if and only if

∃t ∈ R : h = (
m0 + σ

√
ξ · e1/ξ · e2 + t , m0 + σ

√
ξ · e2/ξ · e1 + t

)
.

This in turn gives an explicit formula for gpl(h).
Since gpp above is differentiable and strictly concave, all points of riU are exposed

points of differentiability. Theorem 3.1 implies that Busemann functions (3.2) exist
in all directions ξ ∈ riU . They minimize formulas (2.14) and (2.15) as given in
(3.5) and (3.6). For each ξ ∈ riU the processes {Bξ (ke1, (k + 1)e1) : k ∈ Z+}
and {Bξ (ke2, (k + 1)e2) : k ∈ Z+} are i.i.d. processes independent of each other,
exponential or geometric depending on the case, with means

E[Bξ (kei , (k + 1)ei )] = m0 + σ
√

ξ · e3−i/ξ · ei , i ∈ {1, 2}. (3.9)

For the distribution of Bξ see Theorem 8.1 in [14], Section 3.3 in [15], and Sect. 7.1
below.

3.2 Flat edge in the percolation cone

In this section we assume that the LPP weights satisfyωx ≤ 1 and p1 = P{ω0 = 1} >
0. The classic Durrett-Liggett flat edge result, sharpened by Marchand, implies that
if p1 is large enough, gpp is linear on the percolation cone. By the more recent work
of Auffinger-Damron, gpp is differentiable on the edges. We make a precise statement
about this below, after a short detour into oriented percolation.

In oriented site percolation vertices of Z
2 are assigned i.i.d. {0, 1}-valued random

variables {σz}z∈Z2 with p1 = P{σ0 = 1}. For points u ≤ v inZ
2 wewrite u → v (there
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is an open path from u to v) if there exists an up-right path u = x0, x1, . . . , xm = v

with xi − xi−1 ∈ {e1, e2}, m = |v − u|1, and such that σxi = 1 for i = 1, . . . ,m.
(The openness of a path does not depend on the weight at the initial point of the path.)
The percolation event {u → ∞} is the existence of an infinite open up-right path
from point u. There exists a critical threshold pc ∈ (0, 1) such that if p1 < pc then
P{0 → ∞} = 0 and if p1 > pc then P{0 → ∞} > 0. (The facts we need about
oriented site percolation are proved in article [20] for oriented edge percolation. The
proofs apply to site percolation just as well.)

Let On = {u ∈ Z
2+ : |u|1 = n, 0 → u} denote the set of vertices on level n that

can be reached from the origin along open paths. The right edge an = maxu∈On {u ·e1}
is defined on the event {On 
= ∅}. When p1 ∈ (pc, 1) there exists a constant βp1 ∈
(1/2, 1) such that [20, eqn. (7) on p. 1005]

lim
n→∞

an
n
1{0→∞} = βp11{0→∞} P-a.s.

Let η = (βp1 , 1 − βp1) and η = (1 − βp1 , βp1). The percolation cone is the set
{ξ ∈ R

2+ : ξ/|ξ |1 ∈ [η, η]}. The next theorem is proved by associating an oriented
site percolation process to the LPP process by defining σx = 1{ωx = 1}.
Theorem 3.3 Assume that {ωx }x∈Z2 are i.i.d., E|ω0|p < ∞ for some p > 2 and
ωx ≤ 1. Suppose pc < p1 = P{ω0 = 1} < 1. Let ξ ∈ U . Then gpp(ξ) ≤ 1,
and gpp(ξ) = 1 if and only if ξ ∈ [ η, η ]. The endpoints η and η are points of
differentiability of gpp.

Theorem 3.3 above summarizes a development carried out for undirected first-
passage percolation in articles [4,21,42]. A proof of Theorem 3.3 for the corner growth
model, adapted from the earlier arguments, is in Appendix D of [25]. As a corollary,
our results that assume differentiable endpoints of a maximal linear segment are valid
for the percolation cone.

Theorem 3.4 Assume (2.1), ωx ≤ 1 and pc < p1 = P{ω0 = 1} < 1. There exists
a stationary L1(P) cocycle {B(x, y) : x, y ∈ Z

2} and an event Ω0 with P(Ω0) = 1
such that the following statements hold for each ω ∈ Ω0. Let vn ∈ Z

2+ be a sequence
such that

|vn|1→∞ and 1− βp1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ βp1 . (3.10)

Then
B(ω, x, y) = lim

n→∞
(
Gx,vn (ω)− Gy,vn (ω)

)
(3.11)

for all x, y ∈ Z
2. Furthermore, E[B(x, x + e1)] = E[B(x, x + e2)] = 1.

Continuing with the assumptions of Theorem 3.4, we develop a more explicit for-
mula for the Busemann function. Let

ψ(ω) = inf
x0,∞: x0=0

∞∑

k=0
(1− ωxk ) (3.12)
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where the infimum is over all infinite up-right paths that start at x0 = 0.ψ ismeasurable
because it is the nondecreasing limit of n − Gn(0) as n → ∞. As part of verifying
this we take a convergent subsequence of maximizing paths for Gn(0) and establish
the existence of a path x̄0,∞ such that

ψ(ω) =
∞∑

k=0
(1− ωx̄k ) = lim

n→∞(n − G0, x̄n ).

x̄0,∞ must be a geodesic, that is, any segment x̄m,n for 0 ≤ m < n < ∞ must give
the maximal passage time Gx̄m , x̄n because otherwise there is a better path.

By [20, eqn. (3) on p. 1028] applied to oriented site percolation, under p1 > pc

the event ∪0≤k≤n{(k, n − k)→∞} fails with probability at most e−γ n for a constant
γ > 0. On this event ψ ≤ (1 − c)n. (Recall that ωx ≥ c a.s. is part of assumption
(2.1).) Consequently ψ has an exponential moment and in particular is almost surely
finite.

Theorem 3.5 Under the assumptions of Theorem 3.4, the Busemann function B of
the percolation cone in (3.11) is given by

B(ω, x, y) = (y − x) · (e1 + e2)+ ψ(Tyω)− ψ(Txω). (3.13)

Proof Let x ′0,∞ be a path that achieves the infimum over paths that start at x , in the
environment ω:

ψ(x, ω) = ψ(Txω) = inf
x0,∞: x0=x

∞∑

k=0
(1− ωxk ) =

∞∑

k=0
(1− ωx ′k ).

We argue that sequence x ′n must satisfy (3.10). To get a contradiction, suppose that
x ′ni · e1 > |x ′ni |1(βp1 + ε) for some ε > 0 and a subsequence ni . Then by the shape
theorem (2.5) and the part of Theorem 3.3 that says gpp < 1 away from the percolation
cone, lim n−1i Gx, x ′ni

≤ 1− δ for some δ > 0. We have a contradiction:

ψ(x, ω) ≥
ni−1∑

k=0
(1− ωx ′k ) = ni − Gx, x ′ni

↗∞ as i →∞.

Now we can take the limit in (3.11) along x ′n . Let m′n = |x ′n − x |1 and m′′n =
|x ′n − y|1. Take n large enough so that x ′n ≥ x ∨ y in coordinatewise order. Use
Gy, x ′n ≤ Gm′′n (0) ◦ Ty to write

Gx, x ′n − Gy, x ′n ≥ (x ′n − x) · (e1 + e2)− [m′n − Gx, x ′n ]
− (x ′n − y) · (e1 + e2)+ [m′′n − Gm′′n (0) ◦ Ty]
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and take a limit to get

B(ω, x, y) = lim
n→∞(Gx, x ′n − Gy, x ′n ) ≥ (y − x) · (e1 + e2)− ψ(Txω)+ ψ(Tyω).

Switch around x and y and use B(ω, x, y) = −B(ω, y, x) to get the opposite inequal-
ity. The proof is complete. ��
Remark 3.6 (Weak disorder in the percolation cone) At inverse temperature β ∈
(0,∞), the point-to-line partition function of the directed polymer model is

Zn =
∑

x0,n−1
2−n+1e

β
n−1∑
k=0

ωxk

where the sum is over admissible paths x0,n−1 that start at x0 = 0. The normalized
partition function Wn = Zn/EZn is a positive martingale and has an a.s. limit Wn →
W∞. By definition, the model is in weak disorder if P(W∞ > 0) = 1 and otherwise in
strong disorder [33, p. 208]. It is known that the 1+1 dimensional directed polymer is in
strong disorder at all positive β-values, as long as ω0 has finite exponential moments.
(See [17, Thm. 2.3(b)] and [12, Thm. 1.1]).

The zero-temperature limit of the polymer is the point-to-line last-passage model:
eGn(0) = limβ→∞ Z1/β

n , while limβ→∞W 1/β
n = eGn(0)−n . Process eGn(0)−n is no

longer a martingale but it is a supermartingale (because Gn(0) ≤ Gn−1(0)+ 1) and,
as we have seen, converges a.s. to e−ψ . Above we observed that ψ < ∞ under
p1 > pc. So the martingale criterion suggests that the model is in weak disorder.

We can observe two other markers of weak disorder. The fluctuation exponent of
Gn(0) is zero, since without any normalization, Gn(0) − ngpl(0) = Gn(0) − n con-
verges to a finite random quantity. Furthermore, the centered cocycle F(ω, x, y) =
h(B)·(x−y)−B(ω, x, y) thatminimizes inTheorem3.2(i) is a gradient: F(ω, x, y) =
ψ(Txω)−ψ(Tyω). It is in general true in weak disorder that the minimizer of the vari-
ational formula for the quenched point-to-line free energy is a gradient [51, Thm. 2.8],
though it is currently an open question whether this is a characterization of weak
disorder.

Notice for the remainder of the paper No assumptions on the weights beyond
(2.1) and no regularity assumptions on the shape function gpp are used, except when
otherwise stated.

4 Duality

By homogeneity we can represent gpp by a single variable function. A way of doing
this that ties in naturally with the queuing theory arguments we use later is to define

γ (s) = gpp(1, s) = gpp(s, 1) for 0 ≤ s <∞. (4.1)
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Function γ is real-valued, continuous and concave. Consequently one-sided deriva-
tives γ ′(s±) exist and are monotone: γ ′(s0+) ≥ γ ′(s1−) ≥ γ ′(s1+) for 0 ≤ s0 < s1.
Symmetry and homogeneity of gpp give γ (s) = sγ (s−1).

Lemma 4.1 The derivatives satisfy γ ′(s±) > m0 for all s ∈ R+, γ ′(0+) = ∞, and
γ ′(∞−) ≡ lims→∞ γ ′(s±) = γ (0) = m0.

Proof The shape universality at the boundary ofR
2+ byMartin [43, Theorem 2.4] says

that

γ (s) = m0 + 2σ
√
s + o(

√
s ) as s ↘ 0. (4.2)

This gives γ (0) = m0 and γ ′(0+) = ∞. Lastly,

γ ′(∞−) = lim
s→∞ s−1γ (s) = lim

s→∞ γ (s−1) = γ (0) = m0.

Martin’s asymptotic (4.2) and γ (s) = sγ (s−1) give

γ (s) = sm0 + 2σ
√
s + o(

√
s ) as s ↗∞. (4.3)

This is incompatible with having γ ′(s) = m0 for s ≥ s0 for any s0 <∞. ��
The lemma above has two important geometric consequences:

every linear segment of gpp must lie in the interior riU , and (4.4)

the boundary {ξ ∈ R
2+ : gpp(ξ) = 1} of the limit shape is asymptotic to the axes.

Define

f (α) = sup
s≥0
{γ (s)− sα} for m0 < α <∞. (4.5)

Remark 4.2 (Queueing interpretations) The quantities introduced in this section have
natural interpretations in a queueing context. The queueing connection of LPP in terms
of tandem service stations goes as follows. Imagine a queueing systemwith customers
labeled 0, 1, . . . ,m and service stations labeled 0, 1, . . . , n. The random weight ωi, j

is the service time of customer i at station j . At time t = 0 all customers are lined
up at service station 0. Customers proceed through the system in order, obeying FIFO
(first-in-first-out) discipline, and joining the queue at station j+1 as soon as service at
station j is complete. Then for each 0 ≤ k ≤ m and 0 ≤ � ≤ n, G(0,0),(k,�) is the time
when customer k enters service at station � and G(0,0),(k,�) + ωk,� is the time when
customer k departs station � and joins the end of the queue at station � + 1. Among
the seminal references for these ideas are [29,44].

In Sect. 7 we make use of a queueing system that operates in this manner but
is stationary in space and time, and the sequences of customers and stations are bi-
infinite. In this setting α ∈ (m0,∞) is the mean interarrival (and interdeparture) time
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of customers at each queue, and it parametrizes the stationary distributions of the
system. f (α) is the mean sojourn time, that is, the time between arrival and departure
of a particular customer at a particular station.

Lemma 4.3 Function f is a strictly decreasing, continuous and convex involution of
the interval (m0,∞) onto itself, with limits f (m0+) = ∞ and f (∞−) = m0. That
f is an involution means that f ( f (α)) = α.

Proof Asymptotics (4.2) and (4.3) imply that m0 < f (α) < ∞ for all α > m0 and
also that the supremum in (4.5) is attained at some s. Furthermore, α < β implies
f (β) = γ (s0)− s0β with s0 > 0 and f (β) < γ (s0)− s0α ≤ f (α). As a supremum
of linear functions f is convex, and hence continuous on the open interval (m0,∞).

We show how the symmetry of gpp implies that f is an involution. By concavity of
γ ,

f (α) = γ (s)− sα if and only if α ∈ [γ ′(s+), γ ′(s−)] (4.6)

and by Lemma 4.1 the intervals on the right cover (m0,∞). Since f is strictly decreas-
ing the above is the same as

α = γ (s−1)− s−1 f (α) if and only if f (α) ∈ [ f (γ ′(s−)), f (γ ′(s+))]. (4.7)

Differentiating γ (s) = sγ (s−1) gives

γ ′(s±) = γ (s−1)− s−1γ ′(s−1∓). (4.8)

By (4.6) and (4.8) the condition in (4.7) can be rewritten as

f (α) ∈ [γ (s)− sγ ′(s−), γ (s)− sγ ′(s+)] = [γ ′(s−1+), γ ′(s−1−)]. (4.9)

Combining this with (4.6) and (4.7) shows that α = f ( f (α)). The claim about the
limits follows from f being a decreasing involution. ��

Extend these functions to the entire real line by γ (s) = −∞ when s < 0 and
f (α) = ∞ when α ≤ m0. Then convex duality gives

γ (s) = inf
α>m0
{ f (α)+ sα}. (4.10)

The natural bijection between s ∈ (0,∞) and ξ ∈ riU that goes together with
(4.1) is

s = ξ · e1/ξ · e2. (4.11)

Then direct differentiation, (4.6) and (4.8) give

∇gpp(ξ±) = (
γ ′(s±), γ ′(s−1∓)

) = (
γ ′(s±), f (γ ′(s±))

)
. (4.12)
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Since f is linear on [γ ′(s+), γ ′(s−)], we get the following connection between the
gradients of gpp and the graph of f : for ξ ∈ riU ,

[∇gpp(ξ+),∇gpp(ξ−)] = {(α, f (α)) : α ∈ [γ ′(s+), γ ′(s−)]}. (4.13)

The next theorem details the duality between tilts h and velocities ξ . It is needed
only for Sect. 5.3 where we solve the variational formulas.

Theorem 4.4 (i) Let h ∈ R
2. There exists a unique t = t (h) ∈ R such that

h − t (e1 + e2) ∈ −[∇gpp(ξ+),∇gpp(ξ−)] (4.14)

for some ξ ∈ riU . The set of ξ for which (4.14) holds is a nonempty (but possibly
degenerate) line segment [ ξ(h), ξ(h)] ⊂ riU . If ξ(h) 
= ξ(h) then [ ξ(h), ξ(h)]
is a maximal linear segment of gpp.

(ii) ξ ∈ riU and h ∈ R
2 satisfy duality (2.7) if and only if (4.14) holds.

Proof The graph {(α, f (α)) : α > m0} is strictly decreasing with limits f (m0+) =
∞ and f (∞−) = m0. Since every 45 degree diagonal intersects it at a unique point,
the equation

h = −(α, f (α))+ t (e1 + e2) (4.15)

defines a bijectionR
2 � h←→ (α, t) ∈ (m0,∞)×R illustrated in Fig. 2. Combining

this with (4.13) shows that (4.14) happens for a unique t and for at least one ξ ∈ riU .
Once h and t = t (h) are given, the geometry of the gradients ((4.12), (4.13) and

limits (2.9)) can be used to argue the claims about the ξ that satisfy (4.14). This proves
part (i).

Fig. 2 The graph of f and
bijection (4.15) between (α, t)
and h

αm0

m0

t(e1 + e2)

−h

(α , f (α))
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That h of the form (4.14) is dual to ξ follows readily from the fact that gradients
are dual and gpl(h + t (e1 + e2)) = gpl(h)+ t (this last from Definition (2.4)).

Note the following general facts for any q ∈ [∇gpp(ζ+),∇gpp(ζ−)]. By concavity
gpp(η) ≤ gpp(ζ ) + q · (η − ζ ) for all η. Combining this with homogeneity gives
gpp(ζ ) = q · ζ . Together with duality (2.6) we have

gpl(−q) = 0 for q ∈
⋃

ζ∈riU
[∇gpp(ζ+),∇gpp(ζ−)]. (4.16)

It remains to show that if h is dual to ξ then it satisfies (4.14). Let (α, t)be determined
by (4.15). From the last two paragraphs

gpl(h) = gpl(−α,− f (α))+ t = t.

Let s = ξ · e1/ξ · e2 so that

gpp(ξ)+ h · ξ = γ (s)

1+ s
− αs + f (α)

1+ s
+ t.

Thus duality gpl(h) = gpp(ξ)+ h · ξ implies γ (s) = αs+ f (α) which happens if and
only if α ∈ [γ ′(s+), γ ′(s−)]. (4.13) now implies (4.14). ��

5 Stationary cocycles

In this section we describe the stationary cocycles, then show how these define sta-
tionary last-passage percolation processes and also solve the variational formulas for
gpp(ξ) and gpl(h). Assumption (2.1) is in force but no other assumptions are made.

5.1 Existence and properties of stationary cocycles

By appeal to queueing fixed points, in Sect. 7 we construct a family of cocycles
{Bξ
±}ξ∈riU on an extended space Ω̂ = Ω ×Ω ′ = Ω × R

{1,2}×A0×Z
2
where A0 is a

countable subset of the interval (m0,∞), defined in (7.15) below. Generic elements of
Ω̂ are denoted by ω̂ = (ω, ω′)whereω = (ωx )x∈Z2 ∈ Ω = R

Z
2
is the original weight

configuration and ω′ = (ω
i,α
x )i∈{1,2}, α∈A0, x∈Z2 . Ŝ denotes the Borel σ -algebra of Ω̂ ,

and in this context S denotes the sub-σ -algebra of Ŝ generated by the projection
ω̂ �→ ω. Spatial translations act in the usual manner: (Tx ω̂)y = ω̂x+y for x, y ∈ Z

2

where ω̂x = (ωx , ω
′
x ) = (ωx , (ω

i,α
x )i∈{1,2}, α∈A0).

Definition 2.1 of a cocycle makes no reference to the LPP process. The key feature
that connects cocycles with the last-passage weights is captured in the next definition.
It was isolated in our previous paper [27] that developed the cocycle set-up for general
polymer and percolation models. This property is behind all our applications of the
cocycles: construction of stationary LPP in Sect. 5.2 which in turn is used to prove
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Busemann limits, identification of minimizers of variational formulas in Sect. 5.3, and
study of geodesics in [26].

Definition 5.1 A stationary L1 cocycle B on Ω̂ recovers potential V if

V (ω̂) = min
i∈{1,2} B(ω̂, 0, ei ) for P̂-a.e. ω̂. (5.1)

In our present case the potential V : Ω̂ → R is simply V (ω̂) = ω0, the last-passage
weight at the origin.

The next theorem gives the existence statement and summarizes the properties of
these cocycles. This is the only place where our proofs use the assumption P(ω0 ≥
c) = 1, and the only reason is that the queueing results we reference have been proved
only for ω0 ≥ 0. In part (i) below we use this notation: for a finite or infinite set
I ⊂ Z

2, I< = {x ∈ Z
2 : x 
≥ z ∀z ∈ I } is the set of lattice points that do not lie on a

ray from I at an angle in [0, π/2]. For example, if I = {0, . . . ,m} × {0, . . . , n} then
I< = Z

2
�Z

2+.

Theorem 5.2 There exist real-valued Borel functions Bξ
+(ω̂, x, y) and Bξ

−(ω̂, x, y)
of (ω̂, ξ, x, y) ∈ Ω̂ × riU × Z

2 × Z
2 and a translation invariant Borel probability

measure P̂ on (Ω̂, Ŝ) such that the following properties hold.

(i) Under P̂, the marginal distribution of the configuration ω is the i.i.d. measure P

specified in assumption (2.1). For each ξ ∈ riU and ±, the R
3-valued process

{ψ±,ξ
x }x∈Z2 defined by

ψ±,ξ
x (ω̂) = (ωx , B

ξ
±(ω̂, x, x + e1), B

ξ
±(ω̂, x, x + e2))

is separately ergodic under both translations Te1 and Te2 . For any I ⊂ Z
2, the

variables

{
(ωx , B

ξ
+(ω̂, x, x + ei ), B

ξ
−(ω̂, x, x + ei )) : x ∈ I, ξ ∈ riU , i ∈ {1, 2}}

are independent of {ωx : x ∈ I<}.
(ii) Each process Bξ

± = {Bξ
±(x, y)}x,y∈Z2 is a stationary L1(̂P) cocycle (Definition

2.1) that recovers the potential (Definition 5.1):

ωx = Bξ
±(ω̂, x, x + e1) ∧ Bξ

±(ω̂, x, x + e2) P̂− a.s. (5.2)

The mean vectors h±(ξ) = h(Bξ
±) defined by (2.12) satisfy

−h±(ξ) = (
Ê[Bξ

±(x, x + e1)] , Ê[Bξ
±(x, x + e2)]

) = ∇gpp(ξ±) (5.3)

and are dual to velocity ξ as in (2.7).
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(iii) No two distinct cocycles have a common tilt vector. That is, if h+(ξ) = h−(ζ )

then

Bξ
+(ω̂, x, y) = Bζ

−(ω̂, x, y) ∀ ω̂ ∈ Ω̂, x, y ∈ Z
2

and similarly for all four combinations of ± and ξ, ζ . These equalities hold
for all ω̂ without an almost sure modifier because they come directly from the
construction. In particular, if ξ ∈ D then

Bξ
+(ω̂, x, y) = Bξ

−(ω̂, x, y) = Bξ (ω̂, x, y) ∀ ω̂ ∈ Ω̂, x, y ∈ Z
2,

where the second equality defines the cocycle Bξ .
(iv) There exists an event Ω̂0 with P̂(Ω̂0) = 1 and such that (a) and (b) below hold

for all ω̂ ∈ Ω̂0, x, y ∈ Z
2 and ξ, ζ ∈ riU .

(a) Monotonicity: if ξ · e1 < ζ · e1 then

Bξ
−(ω̂, x, x + e1) ≥ Bξ

+(ω̂, x, x + e1) ≥ Bζ
−(ω̂, x, x + e1)

and Bξ
−(ω̂, x, x + e2) ≤ Bξ

+(ω̂, x, x + e2) ≤ Bζ
−(ω̂, x, x + e2).

(5.4)

(b) Right continuity: if ξn · e1 ↘ ζ · e1 then

lim
n→∞ Bξn± (ω̂, x, y) = Bζ

+(ω̂, x, y). (5.5)

(v) Left continuity at a fixed ζ ∈ riU : there exists an event Ω̂(ζ ) with P̂(Ω̂(ζ )) = 1
and such that for any sequence ξn · e1 ↗ ζ · e1

lim
n→∞ Bξn± (ω̂, x, y) = Bζ

−(ω̂, x, y) for ω̂ ∈ Ω̂(ζ ), x, y ∈ Z
d . (5.6)

Limits (5.5) and (5.6) hold also in L1(̂P) due to inequalities (5.4).

The conditional expectations Ê[Bξ
±(x, y)|S] are cocycles that are functions of ω

alone, but the conditioning may destroy crucial property (5.2) that relates the cocycles
to the percolation. Some mild additional regularity on gpp guarantees that all cocycles

ω̂ �→ Bξ
±(ω̂, x, y) are in fact S-measurable. This theorem is proved in Sect. 6.

Theorem 5.3 Assume that gpp is differentiable at the endpoints of its linear segments

(if any). Then all cocycles {Bξ
±(x, y)}ξ∈riU , x,y∈Z2 from Theorem 5.2 are measurable

with respect to (the completion of) S.

Remark 5.4 The cocycle construction of Theorem 5.2 undertaken in Sect. 7 utilizes
a countable dense subset U0 of U such that, for ξ ∈ U0, nearest-neighbor cocycle

values are coordinate projections Bξ
±(ω̂, x, x + ei ) = ω

i,γ ′(s±)
x where s is defined by

(4.11).U0 contains all points of nondifferentiability and endpoints of linear segments
of gpp. For ζ ∈ (riU )�U0 we define Bζ = Bζ

± through right limits from {Bξ
±}ξ∈U0 .
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This is behind Theorem 5.2(iii)–(iv). Monotonicity (5.4) simultaneously for all Bξ
±

outside a single null set will be convenient for constructing geodesics in [26].
The cocycle properties and (5.2) can also be arranged to hold simultaneously for

all Bξ
± outside a single null set, if so desired. But for left and right limits to agree at a

particular ζ we have to allow for the exceptional P̂-null event (Ω̂(ζ ))c that is specific
to ζ . Thus left limit (5.6) is not claimed for all ζ outside a single null set.

Other conventions are possible in the construction. We could extend Bξ
± from U0

so that Bξ
+ is right-continuous and Bξ

− left-continuous in ξ . Monotonicity (5.4) would

still hold outside a single null set, but Bξ
+ = Bξ

− would be only almost surely true for
a given ξ ∈ E , instead of identically true.

5.2 Stationary last-passage percolation

Fix a cocycle B(ω̂, x, y) = Bξ
+(ω̂, x, y) or Bξ

−(ω̂, x, y) from Theorem 5.2. Fix a point
v ∈ Z

2 that will serve as an origin. By part (i) of Theorem 5.2, the weights {ωx : x ≤
v−e1−e2} are independent of {B(v−(k+1)ei , v−kei ) : k ∈ Z+, i ∈ {1, 2}}. These
define a stationary last-passage percolation process in the third quadrant relative to the
origin v, in the following sense. Define passage timesGNE

u,v that use the cocycle as edge
weights on the north and east boundaries and weights ωx in the bulk x ≤ v− e1− e2:

GNE
u,v = B(u, v) for u ∈ {v − kei : k ∈ Z+, i ∈ {1, 2}}

and GNE
u,v = ωu + GNE

u+e1,v ∨ GNE
u+e2,v for u ≤ v − e1 − e2 .

(5.7)

It is immediate from recovery ωx = B(x, x + e1) ∧ B(x, x + e2) and additivity of B
that

GNE
u,v = B(u, v) for all u ≤ v.

Process {GNE
u,v : u ≤ v} is stationary in the sense that the increments

GNE
x,v − GNE

x+ei ,v = B(x, x + ei ) (5.8)

are stationary under lattice translations and, as the equation above reveals, do not
depend on the choice of the origin v (as long as we stay southwest of the origin).

Remark 5.5 In the exactly solvable cases whereωx is either exponential or geometric,
more is known. Given the stationary cocycle, define weights

Yx = B(x − e1, x) ∧ B(x − e2, x).

Then the weights {Yx } have the same i.i.d. distribution as the original weights {ωx }.
Furthermore, {Yx : x ≥ v+e1+e2} are independent of {B(v+kei , v+(k+1)ei ) : k ∈
Z+, i ∈ {1, 2}}. Hence a stationary last-passage percolation process can be defined in
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the first quadrant with cocycles on the south and west boundaries:

GSW
v,x = B(v, x) for x ∈ {v + kei : k ∈ Z+, i ∈ {1, 2}}

and GSW
v,x = Yx + GSW

v,x−e1 ∨ GSW
v,x−e2 for x ≥ v + e1 + e2 .

This feature appears in [10] as the “Burke property” of the exponential last-passage
model. It also works for the log-gamma polymer in positive temperature [28,55]. We
do not know presently if this works in the general last-passage case.

5.3 Solution to the variational formulas

In this section we construct minimizers for variational formulas (2.14)–(2.15) in terms
of the cocycles from Theorem 5.2. The theorems below are versions of Theorem 3.2
that we can state without extra regularity assumptions on the shape function gpp. The
proof of Theorem3.2 has towait till Sect. 6, wherewe identify theminimizing cocycles
used below as Busemann functions under regularity assumptions on gpp.

Recall from Theorem 4.4 that gpp is linear over each line segment [ ξ(h), ξ(h)] and
hence, by Theorem 5.2(iii), cocycles Bξ coincide for all ξ ∈ ]ξ(h), ξ(h)[.

Theorem 5.6 Let {Bξ
±} be the cocycles given in Theorem 5.2. Fix h ∈ R

2. Let t (h),
ξ(h), and ξ(h) be as in Theorem 4.4. One has the following three cases.

(i) ξ(h) 
= ξ(h): For any (and hence all) ξ ∈ ]ξ(h), ξ(h)[ let

Fh(ω̂, x, y) = h(ξ) · (x − y)− Bξ (ω̂, x, y). (5.9)

Then for P̂-almost every ω̂

gpl(h) = max
i=1,2{ω0 + h · ei + Fh(ω̂, 0, ei )} = t (h). (5.10)

(ii) ξ(h) = ξ(h) = ξ ∈ D: (5.10) holds for Fh defined as in (5.9).

(iii) ξ(h) = ξ(h) = ξ /∈ D: Let θ ∈ [0, 1] be such that

h − t (h)(e1 + e2) = θh−(ξ)+ (1− θ)h+(ξ)

and define

Fξ±(ω̂, x, y) = h±(ξ) · (x − y)− Bξ
±(ω̂, x, y) and

Fh(ω̂, x, y) = θFξ−(ω̂, x, y)+ (1− θ)Fξ+(ω̂, x, y).
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If θ ∈ {0, 1}, (5.10) holds again almost surely. For all θ ∈ [0, 1] we have

gpl(h) = P-ess sup
ω

max
i=1,2 {ω0 + h · ei + Ê[Fh(0, ei )|S] }

= P̂-ess sup
ω̂

max
i=1,2 {ω0 + h · ei + Fh(ω̂, 0, ei )} = t (h).

(5.11)

In particular, in all cases (i)–(iii), Ê[Fh(x, y)|S] ∈ K0(Ω) is a minimizer in (2.14).

Here are qualitative descriptions of the cases above.

(i) The graph of f has a corner at the point (α, f (α)) where it crosses the 45◦
line through −h. Correspondingly, gpp is linear on [ξ(h), ξ(h)] with gradient

∇gpp(ξ) = (α, f (α)) at interior points ξ ∈ ]ξ(h), ξ(h)[.
(ii) The unique ξ dual to h lies in E .
(iii) The unique ξ dual to h is exposed but not in D .

Proof of Theorem 5.6 Let B be one of Bξ , Bξ
± anddefine centered cocycle F by (2.13).

By (5.3) and (4.16), gpl(h(B)) = 0. Then directly from definitions (2.2) and (2.4),
gpl(h) = (h−h(B)) · e j for j ∈ {1, 2} for any h ∈ R

2 that satisfies (h−h(B)) · (e2−
e1) = 0. Hence by recovery (5.2), for these same h-values, for P̂-a.e. ω̂ and j ∈ {1, 2},

gpl(h) = max
i∈{1,2} {ω0 + h · ei + F(ω̂, 0, ei )} = (h − h(B)) · e j . (5.12)

(This situation is developed for general models in Theorem 3.4 of [27].)
In cases (i) and (ii), (5.10) comes from (5.12) combined with (4.14) and (5.3). The

same works in case (iii) when θ ∈ {0, 1}.
Consider case (iii). Using Theorem 4.4 and gpl(h±(ξ)) = 0 gives

gpl(h) = gpp(ξ)+ h · ξ
= t (h)+ θ(gpp(ξ)+ h−(ξ) · ξ)+ (1− θ)(gpp(ξ)+ h+(ξ) · ξ)

= t (h)+ θgpl(h−(ξ))+ (1− θ)gpl(h+(ξ)) = t (h).

By (5.2), P̂-almost surely

min{θBξ
−(0, e1)+(1−θ)Bξ

+(0, e1) , θBξ
−(0, e2)+(1−θ)Bξ

+(0, e2)} ≥ ω0. (5.13)

Since Ê[Fh(x, y)|S] is a member ofK0(Ω), we can use (2.14) to verify (5.11):

gpl(h) ≤ P-ess sup
ω

max
i=1,2 {ω0 + h · ei + Ê[Fh(0, ei )|S] }

≤ P̂-ess sup
ω̂

max
i=1,2 {ω0 + h · ei + Fh(ω̂, 0, ei )} ≤ t (h) = gpl(h).

(5.14)

The last inequality above is just a rearrangement of (5.13). The same inequalities show
that Ê[Fh(0, ei )|S] minimizes in (2.14) in cases (i) and (ii). ��
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We state also the corresponding theorem for the point-to-point case. Using the
duality (2.7) of h±(ξ) and ξ , it follows as the theorem above.

Theorem 5.7 Let ξ ∈ riU . Then for P̂-a.e. ω̂

gpp(ξ) = max
i=1,2 {ω0 − Bξ

±(ω̂, 0, ei )− h±(ξ) · ξ} = −h±(ξ) · ξ. (5.15)

For any θ ∈ [0, 1], cocycle Ê[θBξ
−+ (1−θ)Bξ

+|S] ∈ K (Ω) is a minimizer in (2.15).

6 Busemann functions from cocycles

In this section we prove the existence of Busemann functions. As before, (2.1) is a
standing assumption. No regularity assumptions are made on gpp, hence the results
below are in terms of inequalities for limsup and liminf. Under additional regularity
assumptions, the sharper theorems claimed in earlier sections are derived as corollaries.

Recall the line segmentUξ = [ξ, ξ ] with ξ · e1 ≤ ξ · e1 from (2.10)–(2.11) and the

cocycles Bξ
± constructed on the extended space (Ω̂, Ŝ, P̂) in Theorem 5.2.

Theorem 6.1 Fix a possibly degenerate segment [ζ, η] ⊂ riU . Assume either that
there is an exposed point ξ such that ξ = ξ = ξ and [ζ, η] = {ξ} = [ ξ, ξ ], or that
[ζ, η] a maximal nondegenerate linear segment of gpp in which case [ζ, η] = [ ξ, ξ ]
for any ξ ∈]ζ, η[. Then there exists an event Ω̂0 with P̂(Ω̂0) = 1 such that for each
ω̂ ∈ Ω̂0 and for any sequence vn ∈ Z

2+ that satisfies

|vn|1→∞ and ξ · e1 ≤ lim
n→∞

vn · e1
|vn|1 ≤ lim

n→∞
vn · e1
|vn|1 ≤ ξ · e1, (6.1)

we have for all x ∈ Z
2

Bξ
+(ω̂, x, x + e1) ≤ lim

n→∞
(
Gx,vn (ω)− Gx+e1,vn (ω)

)

≤ lim
n→∞

(
Gx,vn (ω)− Gx+e1,vn (ω)

) ≤ B
ξ

−(ω̂, x, x + e1) (6.2)

and

B
ξ

−(ω̂, x, x + e2) ≤ lim
n→∞

(
Gx,vn (ω)− Gx+e2,vn (ω)

)

≤ lim
n→∞

(
Gx,vn (ω)− Gx+e2,vn (ω)

) ≤ Bξ
+(ω̂, x, x + e2).

(6.3)

Let us emphasize that the sequence vn is allowed to depend on ω̂ ∈ Ω̂0. The
interesting cases are of course the ones where we have a limit. The next corollary

follows immediately because if ξ, ξ , ξ ∈ D then by Theorem 5.2(iii) B
ξ

± = Bξ = Bξ
±

for all ξ ∈ [ξ , ξ ] .
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Corollary 6.2 Assume ξ, ξ, ξ ∈ D . Then there exists an event Ω̂0 with P̂(Ω̂0) = 1
such that for each ω̂ ∈ Ω0, for any sequence vn ∈ Z

2+ that satisfies (6.1), and for all
x, y ∈ Z

2,
Bξ (ω̂, x, y) = lim

n→∞
(
Gx,vn (ω)− Gy,vn (ω)

)
. (6.4)

The limit implies that P-a.s. Bξ (ω̂, x, y) is a function of (ω, x, y).
In particular, if gpp is differentiable everywhere on riU , then for each direction

ξ ∈ riU there is an event of full P̂-probability on which limit (6.4) holds for any
sequence vn/|vn|1→ ξ with |vn|1→∞.

Before the proof of Theorem 6.1, we complete the proofs of some earlier theorems.

Proof of Theorem 3.1 Limit (3.2) is in Corollary 6.2. Equation (3.4) follows from
(5.3).

To prove the point-to-line limit (3.3) recall the duality from Theorem 4.4. Observe
that

ζ ∈ [ξ, ξ ] ⇐⇒ gpp(ζ ) = gpp(ξ)+ ∇gpp(ξ) · (ζ − ξ)

⇐⇒ gpp(ζ ) = gpp(ξ)− h · (ζ − ξ) ⇐⇒ ζ ∈ [ ξ(h), ξ(h) ]. (6.5)

Let z ∈ {e1, e2}. Pick (ω-dependent) un, vn ∈ Z
2+ so that |un|1 = |vn|1 = n and

Gn(h) = G0,un + h · un and Gn−1(h) ◦ Tz = Gz,vn + h · (vn − z).

Fix ω so that limits (2.4) and (2.5) hold both for ω and Tzω. Then taking n → ∞
along suitable subsequences shows that all limit points of un(ω)/n and vn(ω)/n satisfy
duality (2.7) and so lie in [ ξ(h), ξ(h) ]. By (6.5) these sequences satisfy (6.1). Let
n→∞ in the inequalities

G0,vn − Gz,vn + h · z ≤ Gn(h)− Gn−1(h) ◦ Tz ≤ G0,un − Gz,un + h · z,

and use (6.4) to get the conclusion. ��
Proof of Theorem 3.2 The theorem follows from Theorems 5.6 and 5.7 because the
Busemann function Bξ is the cocycle Bξ from Theorem 5.2. ��
Proof of Theorem 5.3 Under the assumption of differentiability at endpoints of linear
segments, every ξ ∈ D satisfies Corollary 6.2 and so Bξ (·, x, y) is S-measurable.
Any other point ζ ∈ riU is a limit from both left and right ofD-points, and so by parts
(iv) and (v) of Theorem 5.2, cocycles Bζ

± are a.s. limits of S-measurable cocycles.

The remainder of this section proves Theorem 6.1.We begin with a general compar-
ison lemma. This idea goes back at least to [1,2]. With arbitrary real weights {Ỹx }x∈Z2

define last-passage times

G̃u,v = max
x0,n

n−1∑

k=0
Ỹxk .
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The maximum is over up-right paths from x0 = u to xn = v with n = |v − u|1. The
convention is G̃v,v = 0. For x ≤ v − e1 and y ≤ v − e2 denote the increments by

Ĩx,v = G̃x,v − G̃x+e1,v and J̃y,v = G̃ y,v − G̃ y+e2,v .

Lemma 6.3 For x ≤ v − e1 and y ≤ v − e2

Ĩx,v+e2 ≥ Ĩx,v ≥ Ĩx,v+e1 and J̃y,v+e2 ≤ J̃y,v ≤ J̃y,v+e1 . (6.6)

Proof Let v = (m, n). The proof goes by an induction argument. Suppose x = (k, n)

for some k < m. Then on the north boundary

Ĩ(k,n),(m,n+1) = G̃(k,n),(m,n+1) − G̃(k+1,n),(m,n+1)
= Ỹk,n + G̃(k+1,n),(m,n+1) ∨ G̃(k,n+1),(m,n+1) − G̃(k+1,n),(m,n+1)
≥ Ỹk,n = G̃(k,n),(m,n) − G̃(k+1,n),(m,n) = Ĩ(k,n),(m,n) .

On the east boundary, when y = (m, �) for some � < n

J̃(m,�),(m,n+1) = G̃(m,�),(m,n+1) − G̃(m,�+1),(m,n+1)
= Ỹm,� = G̃(m,�),(m,n) − G̃(m,�+1),(m,n) = J̃(m,�),(m,n) .

These inequalities start the induction. Now let u ≤ v− e1− e2. Assume by induction
that (6.6) holds for x = u + e2 and y = u + e1.

Ĩu,v+e2 = G̃u,v+e2 − G̃u+e1,v+e2 = Ỹu + (G̃u+e2,v+e2 − G̃u+e1,v+e2)+

= Ỹu + ( Ĩu+e2,v+e2 − J̃u+e1,v+e2)+

≥ Ỹu + ( Ĩu+e2,v − J̃u+e1,v)+ = Ĩu,v .

The last equality comes by repeating the first three equalities with v instead of v+ e2.
A similar argument works for Ĩu,v ≥ Ĩu,v+e1 and a symmetric argument works for the
J̃ inequalities. ��

The estimates needed for the proof of Theorem 6.1 come from coupling Gu,v with
the stationary LPP described in Sect. 5.2. For the next two lemmas fix ζ ∈ riU and
a cocycle B(ω̂, x, y) = Bζ

±(ω̂, x, y) from Theorem 5.2. Let r = ζ · e1/ζ · e2 so that
α = γ ′(r±) satisfies

α = Ê[B(x, x + e1)] and f (α) = Ê[B(x, x + e2)]. (6.7)

As in (5.7) define

GNE
u,v = B(u, v) for u ∈ {v − kei : k ∈ Z+, i ∈ {1, 2}}

and GNE
u,v = ωu + GNE

u+e1,v ∨ GNE
u+e2,v for u ≤ v − e1 − e2 .

(6.8)
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Fig. 3 Illustration of (6.9).
Forcing the last step to be e1
restricts the maximization to
paths that hit the north boundary
instead of the east boundary. The
path from 0 to (s − τ, t)
contributes gpp(s − τ, t) and the
remaining segment of length τ

on the north boundary
contributes ατ

s

t

s− τ

Let GNE
u,v(A) denote a maximum over paths restricted to the set A. In particular,

below we use

GNE
0, v(v − ei ∈ x�) = max

x� : x|v|1−1=v−ei

|v|1−1∑

k=0
Ỹxk

where the maximum is restricted to paths that go through the point v − ei , and the
weights are from (6.8): Ỹx = ωx for x ≤ v − e1 − e2 while Ỹv−kei = B(v − kei , v −
(k − 1)ei ).

Figure 3 makes the limits of the next lemma obvious. But a.s. convergence requires
some technicalities because the north-east boundaries themselves are translated as the
limit is taken.

Lemma 6.4 Assume (2.1). Fix reals 0 < s, t < ∞. Let vn ∈ Z
2+ be such that

vn/|vn|1 → (s, t)/(s + t) as n → ∞ and |vn|1 ≥ η0n for some constant η0 > 0.
Then we have the following almost sure limits:

|vn|−11 GNE
0, vn (vn − e1 ∈ x�) −→

n→∞ (s + t)−1 sup
0≤τ≤s

{ατ + gpp(s − τ, t)} (6.9)

and

|vn|−11 GNE
0, vn (vn − e2 ∈ x�) −→

n→∞ (s + t)−1 sup
0≤τ≤t

{ f (α)τ + gpp(s, t − τ)}. (6.10)

Proof We prove (6.9). Fix ε > 0, let M = �ε−1�, and

qnj = j
⌊ε|vn|1s

s + t

⌋
for 0 ≤ j ≤ M − 1, and qnM = vn · e1.

For large enough n it is the case that qnM−1 < vn · e1.
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Suppose a maximal path for GNE
0, vn

(vn − e1 ∈ x�) enters the north boundary from
the bulk at the point vn − (�, 0) with qnj < � ≤ qnj+1. By superadditivity

GNE
0, vn (vn − e1 ∈ x�) = G0, vn−(�,1) + ωvn−(�,1) + B(vn − (�, 0), vn)

≤ G0, vn−(qnj ,1)
+ qnj α −

�−1∑

k=qnj+1

(
ωvn−(k,1) − m0

)+ (�− 1− qnj )m0

+ (
B(vn − (�, 0), vn)− �α

)+ (�− qnj )α.

The two main terms come right after the inequality above and the rest are errors.
Define the centered cocycle F(x, y) = h(B) · (x − y)− B(x, y) so that

B(vn − (�, 0), vn)− �α = F(0, vn − (�, 0))− F(0, vn).

The potential-recovery property (5.1) ω0 = B(0, e1) ∧ B(0, e2) gives

F(0, ei ) ≤ α ∨ f (α)− ω0 for i ∈ {1, 2}.

The i.i.d. distribution of {ωx } and E(|ω0|p) < ∞ with p > 2 are strong enough to
guarantee that Lemma 7.8 from Appendix applies and gives

lim
N→∞

1

N
max

x≥0 : |x |1≤N
|F(ω̂, 0, x)| = 0 for a.e. ω̂. (6.11)

Collect the bounds for all the intervals (qnj , q
n
j+1] and let C denote a constant.

Abbreviate Snj,m =
∑qnj+m

k=qnj+1
(
ωvn−(k,1) − m0

)
.

GNE
0, vn (vn − e1 ∈ x�) ≤ max

0≤ j≤M−1

{
G0, vn−(qnj ,1)

+ qnj α + C(qnj+1 − qnj )

+ max
0≤m<qnj+1−qnj

|Snj,m | + max
qnj <�≤qnj+1

F(0, vn − (�, 0))− F(0, vn)
}
. (6.12)

Divide through by |vn|1 and let n→∞. Limit (2.5) gives convergence of the G-term
on the right. We claim that the terms on the second line of (6.12) vanish. Limit (6.11)
takes care of the F-terms. Combine Doob’s maximal inequality for martingales with
Burkholder’s inequality [11, Thm. 3.2] to obtain, for δ > 0,

P

{
max

0≤m<qnj+1−qnj
|Snj,m | ≥ δ|vn|1

}
≤

E
[|Snj, qnj+1−qnj |

p
]

δ p|vn|p1

≤ C

δ p|vn|p1
E

⎡

⎢⎣

∣∣∣∣∣∣

qnj+1−qnj∑

i=1

(
ωi,0 − m0

)2
∣∣∣∣∣∣

p/2 ⎤

⎥⎦ ≤ C

|vn|p/21

.
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Thus Borel-Cantelli takes care of the Snj,m-term on the second line of (6.12). (This is
the place where the assumption |vn|1 ≥ η0n is used.) We have the upper bound

lim
n→∞ |vn|

−1
1 GNE

0, vn (vn−e1 ∈ x�) ≤ (s + t)−1 max
0≤ j≤M−1

[
gpp(s − s jε, t)+s jεα+Cεs

]
.

Let ε ↘ 0 to complete the proof of the upper bound.
To get the matching lower bound let the supremum supτ∈[0,s]{τα + gpp(s − τ, t)}

be attained at τ ∗ ∈ [0, s]. With mn = |vn|1/(s + t) we have

GNE
0, vn (vn − e1 ∈ x�) ≥ G0,vn−(�mnτ∗�∨1,1) + ωvn−(�mnτ∗�∨1,1)

+ B(vn − (�mnτ
∗� ∨ 1, 0), vn).

Use again the cocycle F from above, and let n→∞ to get

lim
n→∞

|vn|−11 GNE
0, vn (vn − e1 ∈ x�) ≥ (s + t)−1[gpp(s − τ ∗, t)+ τ ∗α].

This completes the proof of (6.9). ��
Continue with the stationary LPP defined by (6.8) in terms of a cocycle B = Bζ

±,
with r = ζ · e1/ζ · e2 and α as in (6.7). Let us call the direction ζ characteristic
for α. The next lemma shows that in stationary LPP a maximizing path to a point
below the characteristic direction will eventually hit the north boundary before the
east boundary. (Illustration in Fig. 4.) We omit the entirely analogous result and proof
for a point above the characteristic line.

Lemma 6.5 Let s ∈ (r,∞). Let vn ∈ Z
2+ be such that vn/|vn|1→ (s, 1)/(1+ s) and

|vn|1 ≥ η0n for some constant η0 > 0. Assume that γ ′(r+) > γ ′(s−). Then P̂-a.s.

char. direction ζ

direction for

Fig. 4 Illustration of Lemma 6.5. With α-boundaries geodesics tend to go in the α-characteristic direction
ζ . If vn converges in a direction below ζ , maximal paths to vn tend to hit the north boundary. The dotted
path that hits the east boundary is unlikely to be maximal for large n
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there exists a random n0 <∞ such that for all n ≥ n0,

GNE
0, vn = GNE

0,vn (vn − e1 ∈ x�). (6.13)

Proof The right derivative at τ = 0 of ατ + gpp(s − τ, 1) = ατ + γ (s − τ) equals

α − γ ′(s−) > α − γ ′(r+) ≥ 0.

The last inequality above follows from the assumption on r . Thus we can find τ ∗ ∈
(0, r) such that

ατ ∗ + gpp(s − τ ∗, 1) > gpp(s, 1). (6.14)

To produce a contradiction let A be the event onwhichGNE
0, vn
= GNE

0,vn
(vn−e2 ∈ x�)

for infinitely many n and assume P̂(A) > 0. Let mn = |vn|1/(1+ s). On A we have
for infinitely many n

|vn|−1GNE
0, vn (vn − e2 ∈ x�) = |vn|−1GNE

0,vn

≥ |vn|−1B(vn − (�mnτ
∗� + 1)e1, vn)+ |vn|−1G0,vn−(�mnτ∗�+1,1)

+ |vn|−1ωvn−(�mnτ∗�+1,1).

Apply (6.10) to the leftmost quantity. Apply limits (2.5) and (6.11) and stationarity
and integrability of ωx to the expression on the right. Both extremes of the above
inequality converge almost surely. Hence on the event A the inequality is preserved to
the limit and yields (after multiplication by 1+ s)

sup
0≤τ≤1

{ f (α)τ + gpp(s, 1− τ)} ≥ ατ ∗ + gpp(s − τ ∗, 1).

The supremum of the left-hand side is achieved at τ = 0 because the right derivative
equals

f (α)− γ ′( 1−τ
s −) ≤ f (α)− γ ′(r−1−) ≤ 0

where the first inequality comes from s−1 < r−1 and the second from (4.9). Therefore

gpp(s, 1) ≥ ατ ∗ + gpp(s − τ ∗, 1)

which contradicts (6.14). Consequently P̂(A) = 0 and (6.13) holds for n large. ��
Proof of Theorem 6.1 The proof goes in two steps.

Step 1. First consider a fixed ξ = ( s
1+s ,

1
1+s ) ∈ riU and a fixed sequence vn such

that vn/|vn|1→ ξ and |vn|1 ≥ η0n for some η0 > 0. We prove that the last inequality
of (6.2) holds almost surely. Let ζ = ( r

1+r ,
1

1+r ) satisfy ζ · e1 < ξ · e1 so that
γ ′(r+) > γ ′(s−) and Lemma 6.5 can be applied. Use cocycle Bζ+ from Theorem
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5.2 to define last-passage timesGNE
u,v as in (6.8). Furthermore, define last-passage times

GN
u,v that use cocycles only on the north boundary and bulk weights elsewhere:

GN
v−ke1,v = Bζ+(v − ke1, v) , GN

v−�e2,v =
�∑

j=1
ωv− je2 ,

and GN
u,v = ωu + GN

u+e1,v ∨ GN
u+e2,v for u ≤ v − e1 − e2 .

For large n we have

Gx,vn − Gx+e1,vn ≤ GN
x,vn+e2 − GN

x+e1,vn+e2
= GNE

x,vn+e1+e2(vn + e2 ∈ x�)− GNE
x+e1,vn+e1+e2(vn + e2 ∈ x�)

= GNE
x,vn+e1+e2 − GNE

x+e1,vn+e1+e2 = Bζ
+(x, x + e1).

The first inequality above is the first inequality of (6.6). The first equality above is
obvious. The second equality is Lemma 6.5 and the last equality is (5.8). Thus

lim
n→∞

(
Gx,vn − Gx+e1,vn

) ≤ Bζ
+(x, x + e1).

Let ζ · e1 increase to ξ · e1. Theorem 5.2(iv) implies

lim
n→∞

(
Gx,vn − Gx+e1,vn

) ≤ B
ξ

−(x, x + e1).

An analogous argument gives the matching lower bound (first inequality of (6.2))
by taking ζ · e1 > ξ · e1 and by reworking Lemma 6.5 for the case where the direction
of vn is above the characteristic direction ζ . Similar reasoning works for vertical
increments Gx,vn − Gx+e2,vn .

Step 2. We prove the full statement of Theorem 6.1. Let η� and ζ� be two sequences
in riU such that η� · e1 < ξ · e1 ≤ ξ · e1 < ζ� · e1, η� → ξ , and ζ� → ξ . Let Ω̂0 be

the event on which limits (5.5) hold for directions ξ and ξ (with sequences ζ� and η�,
respectively) and (6.2) holds for each direction ζ� with sequence �nζ��, and for each
direction η� with sequence �nη��. P̂(Ω̂0) = 1 by Theorem 5.2(iv) and Step 1.

Fix any ω̂ ∈ Ω̂0 and a sequence vn as in (6.1). Abbreviate an = |vn|1. For each �

reason as follows. For large n

�anη�� · e1 < vn · e1 < �anζ�� · e1 and �anη�� · e2 > vn · e2 > �anζ�� · e2.

By repeated application of the first inequality of (6.6),

Gx,�anζ�� − Gx+e1,�anζ�� ≤ Gx,vn − Gx+e1,vn ≤ Gx,�anη�� − Gx+e1,�anη��.
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Take n→∞ and apply (6.2) to the sequences �anζ�� and �anη��. This works because
�anζ�� is a subset of �nζ�� that escapes to infinity. Thus for ω̂ ∈ Ω̂0

B
ζ �+ (ω̂, x, x + e1) ≤ lim

n→∞
(Gx,vn (ω)− Gx+e1,vn (ω))

≤ lim
n→∞(Gx,vn (ω)− Gx+e1,vn (ω)) ≤ B

η
�− (ω̂, x, x + e1).

Take �→∞ and apply (5.5) to arrive at (6.2) as stated. (6.3) follows similarly. ��

7 Cocycles from queuing fixed points

This section proves Theorem 5.2. At the end of the section we address briefly the
exactly solvable case. By shifting the variables {ωx , B

ξ
±(x, x + ei )} in Theorem 5.2

if necessary, we can assume without loss of generality that P{ω0 ≥ 0} = 1. Then
the weights ωx can represent service times in queueing theory. We switch to queuing
terminology to enable the reader to relate this section to queueing literature.

Consider an infinite sequence of ·/G/1/∞/FIFO queues in tandem. That is, each
queue or service station (these terms are used interchangeably) has a general ser-
vice time distribution (the law of ωx under P), a single server, unbounded room for
customers waiting to be served, and customers obey first-in-first-out discipline. The
service stations are indexed by k ∈ Z+ and a bi-infinite sequence of customers is
indexed by n ∈ Z. Customers enter the system at station 0 and move from station to
station in order. The server at station k serves one customer at a time. Once the service
of customer n is complete at station k, customer n moves to the back of the queue at
station k+1 and customer n+1 enters service at station k if they were already waiting
in the queue. If the queue at station k is empty after the departure of customer n, then
server k remains idle until customer n+ 1 arrives. Each customer retains their integer
label as they move through the system.

The system has two independent inputs: (i) a stationary, ergodic, arrival process

A0 = {An,0}n∈Z and (ii) i.i.d. service times {Sn,k}n∈Z,k∈Z+ with distribution S0,0
d= ω0

under P. An,0 ≥ 0 is the time between the arrival of customer n and customer n + 1
at queue 0. Sn,k ≥ 0 is the amount of time the service of customer n takes at station
k. Assume

E[S0,0] = m0 < E[A0,0] <∞. (7.1)

The development begins with the waiting times at station 0. Define the stationary,
ergodic process {Wn,0}n∈Z by

Wn,0 =
⎛

⎝ sup
j≤n−1

n−1∑

i= j

(Si,0 − Ai,0)

⎞

⎠
+

. (7.2)
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By the ergodic theorem and (7.1), Wn,0 < ∞ a.s. ∀n ∈ Z. {Wn,0} satisfies Lindley’s
equation:

Wn+1,0 = (Wn,0 + Sn,0 − An,0)
+. (7.3)

The interpretation of Wn,0 as the waiting time of customer n is natural from this
equation. If Wn,0 + Sn,0 < An,0 then customer n leaves station 0 before customer
n + 1 arrives, and consequently customer n + 1 has no wait and Wn+1,0 = 0. In the
complementary case customer n+ 1 waits time Wn+1,0 = Wn,0 + Sn,0 − An,0 before
entering service at station 0.

Lemma 7.1 n−1Wn,0 → 0 almost surely as n→∞.

Proof Abbreviate Un = Sn,0 − An,0. For a ≥ 0 and ε > 0 define

W ε
0 (a) = a and W ε

n+1(a) = (
W ε

n (a)+Un − E(U0)+ ε
)+ for n ≥ 0.

Check inductively that

W ε
n (0) =

(
max

0≤m<n

n−1∑

k=m
[Uk − E(U0)+ ε]

)+
.

Consequently

W ε
n (a) ≥ W ε

n (0) ≥
n−1∑

k=0
[Uk − E(U0)+ ε] −→ ∞ as n→∞.

Thus W ε
n (a) > 0 for large n which implies, from its definition, that for large n

W ε
n+1(a) = W ε

n (a)+Un − E(U0)+ ε.

Another application of the ergodic theorem gives n−1W ε
n (a)→ ε P-a.s. as n→∞.

Now for the conclusion. Since W0,0 = W ε
0 (W0,0), we can check inductively that

Wn+1,0 = (Wn,0 +Un)
+ ≤ (

W ε
n (W0,0)+Un

)+

≤ (
W ε

n (W0,0)+Un − E(U0)+ ε
)+ = W ε

n+1(W0,0).

From this, 0 ≤ n−1Wn,0 ≤ n−1W ε
n (W0,0)→ ε, and we let ε ↘ 0. ��

The stationary and ergodic process A1 = {An,1}n∈Z of inter-departure times from
queue 0 (equivalently, inter-arrival times at queue 1) is defined by

An,1 = (Wn,0 + Sn,0 − An,0)
− + Sn+1,0. (7.4)
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To see that this definition agrees with common sense, consider the two possible sce-
narios. If Wn+1,0 > 0 from (7.3) then customer n + 1 is already waiting and goes
immediately into service after the departure of customer n. The time An,1 between
the departures of customers n and n + 1 is then exactly the service time Sn+1,0 of
customer n + 1. In the complementary case Wn+1,0 = 0, server 0 is idle for time
An,0 − Sn,0 − Wn,0 before customer n + 1 arrives. The time between the departures
is this idle time plus the service time Sn+1,0.

Combining Eqs. (7.3) and (7.4) and iterating gives

W1,0 + S1,0 +
n∑

i=1
Ai,1 = Wn+1,0 + Sn+1,0 +

n∑

i=1
Ai,0 for n ≥ 1.

This and Lemma 7.1 imply E[A0,1] = E[A0,0]. (In the queueing literature, this has
been observed in [40].)

These steps are repeated successively at each station k = 1, 2, 3, . . . . The stationary,
ergodic arrival process Ak = {An,k}n∈Z at station k is the departure process from
station k − 1. An,k is the inter-arrival time between customers n and n + 1 at station
k, or, equivalently, the inter-departure time between customers n and n + 1 from
station k − 1. Ak is independent of the service times {Sn, j }n∈Z, j≥k because Ak was
constructed as a function of the given initial arrival process A0 and the service times
{Sn, j }n∈Z, 0≤ j≤k−1.Wn,k is the waiting time of customer n at queue k, that is, the time
between the arrival of customer n at station k and the beginning of their service at
station k. These are defined by

Wn,k =
(

sup
j≤n−1

n−1∑

i= j

(Si,k − Ai,k)
)+

, n ∈ Z. (7.5)

Properties Wn,k < ∞, Lemma 7.1, and E[An,k] = E[A0,0] are preserved along the
way. The total time customer n spends at station k is the sojourn time Wn,k + Sn,k .

This procedure constructs the process {An,k, Sn,k,Wn,k}n∈Z,k∈Z+ that satisfies the
following system of equations:

Wn+1,k + Sn+1,k = Sn+1,k + (Wn,k + Sn,k − An,k)
+,

An,k+1 = (Wn,k + Sn,k − An,k)
− + Sn+1,k,

Sn+1,k = (Sn+1,k +Wn+1,k) ∧ An,k+1.
(7.6)

The appearance of Sn+1,k on both sides of the first line is intentional. The third equation
follows from the first two by taking theminimum of either side. Subtracting the second
line from the first line in (7.6) gives the “conservation law”

Wn+1,k + Sn+1,k + An,k = Wn,k + Sn,k + An,k+1. (7.7)

As a product of an ergodic process and an i.i.d. one, the input {An,0, Sn,k}n∈Z,k∈Z+ is
stationary and ergodic under translations of the n-index. Consequently so is the entire
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queuing system. A fixed point is a distribution of {An,0}n∈Z such that the system is
also stationary under translations of the k-index.

The next four statements summarize the situation with fixed points, quoted from
articles [41,48]. Fix the i.i.d. distribution P of the service times {Sn,k}n∈Z, k∈Z+ . Given
a stationary ergodic probability measure μ on R

Z, consider the random variables
{An,0, Sn,0, Wn,0, An,1}n∈Z where {An,0}n∈Z ∼μ are independent of {Sn,0}n∈Z ∼ P,
Wn,0 is defined via (7.2), and An,1 is defined via (7.4). LetΦ(μ) denote the distribution
of the sequence {An,1}n∈Z.Φ is the queueing operator whose fixed points are the focus
now.

Let M α
e (RZ) be the space of translation-ergodic probability measures μ on R

Z

with marginal mean Eμ[A0,0] = α. From the discussion above we know that Φ maps
M α

e (RZ) intoM α
e (RZ). We are interested in ergodic fixed points, so we define

A = {α ∈ (m0,∞) : ∃μ ∈M α
e (RZ) such that Φ(μ) = μ}.

Theorem 7.2 [48, Thm. 1]Letα ∈ A . Then there exists a uniqueμα ∈M α
e (RZ)with

Φ(μα) = μα . Furthermore, let A0 = {An,0}n∈Z be ergodic with mean E[A0,0] =
α and {Sn,k}n∈Z,k∈Z+ i.i.d. with distribution P and independent of A0. Let Ak =
{An,k}n∈Z, k ∈ N, be defined via inductions (7.2) and (7.6). Then as k → ∞ the
distributions of Ak converge weakly to μα .

Theorem 7.3 [41, Thm. 5.1 and 6.4 and Lm. 6.3(a)] Set A is a nonempty, closed
subset of (m0,∞), inf A = m0, and supA = ∞. If α < β are both in A then
μα ≤ μβ in the usual sense of stochastic ordering.

Lemma 7.4 [41, Lm. 6.3(b)] Let α ∈ A , A0 ∼ μα , and {Sn,k} ∼ P independent of
A0. Define Wn,0 via (7.2). Then

Eμα⊗P[W0,0 + S0,0] = f (α). (7.8)

Suppose α ∈ (m0,∞) ∩A c. Let

α = sup
(
A ∩ (m0, α]

) ∈ A and α = inf
(
A ∩ [α,∞)

) ∈ A ,

t = (α− α)/(α− α) and μα = tμα + (1− t)μα . Now μα is a mean α fixed point of
Φ. This fixed point is again attractive, in the following sense.

Theorem 7.5 [41, Prop. 6.5] Let α > m0. Let A0 = {An,0}n∈Z be ergodic with mean
E[A0,0] = α and {Sn,k}n∈Z,k∈Z+ i.i.d. with distribution P and independent of the
{An,0}-process. Let {An,k : n ∈ Z, k ∈ N} be defined via inductions (7.2) and (7.6).
Then as k →∞ the Cesàro mean of the distributions of {An,k}n∈Z converges weakly
to μα .

Based on the development in [41] we deduce auxiliary facts.

Lemma 7.6 (a) Let α < α be points in A such that (α, α) ⊂ A c. Then f is linear
on the interval [α, α].
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(b) Let ξ ∈ D , s = ξ · e1/ξ · e2 and α = γ ′(s). Then α ∈ A .

Proof Part (a). Let 0 < t < 1 and α = tα + (1 − t)α. In the notation of [41],
consider a sequence of tandem queues (Ak, Sk,Wk, Ak+1)k∈Z+ where the initial
arrival process A0 = {An,0}n∈Z is ergodic with mean E(An,0) = α, the service
times {Sk}k∈Z+ = {Sn,k}n∈Z,k∈Z+ are independent of A0 and i.i.d. P-distributed, and
the remaining variables are defined iteratively. Let ( Â, Ŝ, W̃ , D̃) denote a weak limit
point of the Cesàro averages of the distributions of (Ak, Sk,Wk, Ak+1). (The tightness
argument is on p. 2225 of [41].) Then, as shown in [41, eqn. (29)] in the course of the
proof of their Theorem 5.1, W̃ = �( Â, Ŝ) where the mapping � encodes definition
(7.2). By Theorem 7.5 [41, Prop. 6.5] the distribution of Â is tμα + (1 − t)μα . By
[41, Theorem 4.1],

n−1
n−1∑

k=0
W0,k → M(α) ≡ f (α)− m0 almost surely. (7.9)

Combine these facts as follows. First

E(W̃0) = E[�( Â, Ŝ)0] = t Eμα⊗P[�( Â, Ŝ)0] + (1− t)Eμα⊗P[�( Â, Ŝ)0]
= tM(α)+ (1− t)M(α)

where the last equality comes from [41, Lemma 6.3(b)] restated as Lemma 7.4 above.
The weak limit, combined with the law of large numbers (7.9) and dominated conver-
gence, gives, for any c <∞ and along a subsequence,

E(W̃0 ∧ c) = lim
n→∞ n−1

n−1∑

k=0
E(W0,k ∧ c) ≤ lim

n→∞ E
[ (

n−1
n−1∑

k=0
W0,k

)
∧ c

]
= M(α) ∧ c

≤ M(α).

Letting c ↗∞ gives

tM(α)+ (1− t)M(α) ≤ M(α).

Since M is convex and f differs from M by a constant, this implies f (α) = t f (α)+
(1− t) f (α) and completes the proof of part (a).

Part (b). If α ∈ A c, there exist α < α in A such that α ∈ (α, α) ⊂ A c. By part
(a) f is linear on [α, α]. Basic convex analysis implies that γ has multiple tangent
slopes at s and hence cannot be differentiable at s. ��

Given α > m0, let {An,0}n∈Z ∼ μα and i.i.d. {Sn,k}n∈Z,k∈Z+ ∼ P be indepen-
dent. Define {Wn,k, An,k+1}n∈Z,k∈Z+ using (7.5) and (7.6). Because Φ(μα) = μα ,
{An,k, Sn,k,Wn,k}n∈Z,k∈Z+ is stationary inn and k. Extend this to the stationary process
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(A, S,W ) = {An,k, Sn,k,Wn,k}n,k∈Z indexed by Z
2. Define another Z

2-indexed sta-
tionary process ( Ã, S̃, W̃ ) by

( Ãi, j , S̃i, j , W̃i, j ) = (Wj−1,i+1 + S j−1,i+1, S j,i , A j−1,i+1 − S j,i ), (i, j) ∈ Z
2.

(7.10)

Lemma 7.7 Supposeα ∈ A . Then the process (A, S,W ) is ergodic under translation
Te1 , and also ergodic under Te2 . Furthermore, f (α) ∈ A . ( Ã, S̃, W̃ ) is a stationary
queueing system where { Ãn,0}n∈Z has distribution μ f (α), and is also ergodic under
both Te1 and Te2 .

Proof The queueing construction gives Te1 -ergodicity of {An,k, Sn,k,Wn,k}n∈Z, k≥�

for any � ∈ Z. Let B be a Te1 -invariant event of the full process {An,k , Sn,k,Wn,k}n,k∈Z.
Write G� for the σ -algebra generated by {An,k, Sn,k,Wn,k}n∈Z,k≥�. The conditional
expectations E(1B |G�) are Te1 -invariant, hence a.s. constant by the ergodicity proved
thus far. E(1B |G�) → 1B almost surely as � → −∞, and consequently 1B is a.s.
constant. This completes the proof of ergodicity under Te1 .

To get ergodicity under Te2 we transpose, and that leads us to look at ( Ã, S̃, W̃ ) of
(7.10). To see that ( Ã, S̃, W̃ ) is another queueing system with the same i.i.d. service
time distribution S̃i, j = S j,i , we need to check three items.

(i) Independence of { Ãi,�}i∈Z and {S̃i, j }i∈Z, j≥�, for each � ∈ Z. This follows from
the structure of equations (7.6) and the independence of the {Si, j }.

(ii) Ãi, j+1 = (W̃i j + S̃i j − Ãi j )
− + S̃i+1, j . This follows from the top equation of

(7.6).
(iii) The third point needed is

W̃k+1, j =
(

sup
n: n≤k

k∑

i=n
(S̃i j − Ãi j )

)+
. (7.11)

This needs a short argument. Fix k, j . The middle equation of (7.6) gives

W̃i j = (W̃i−1, j + S̃i−1, j − Ãi−1, j )+ (7.12)

which can be iterated to give

W̃k+1, j =
({

W̃�j +
k∑

i=�

(S̃i j − Ãi j )
}
∨

{
max

n:�<n≤k

k∑

i=n
(S̃i j − Ãi j )

} )+
for � ≤ k.

Thus (7.11) follows if W̃�j = 0 for some � ≤ k. Suppose on the contrary that
W̃i j > 0 for all i ≤ k. Apply (7.12) to all W̃i j for n < i ≤ k and divide by |n| to
get

W̃k j

|n| =
W̃nj

|n| +
1

|n|
k−1∑

i=n
(S̃i j − Ãi j )
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which is the same as

A j−1,k+1
|n| − S jk

|n| =
A j−1,n+1
|n| − S jn

|n| +
1

|n|
k−1∑

i=n
(S ji −Wj−1,i+1 − S j−1,i+1).

(7.13)
Let n → −∞. The i.i.d. property of the {Si j } and Theorem 4.1 of [41] quoted
as (7.9) above, combined with (7.8) from above, give the limit in probability

lim
n→−∞

1

|n|
k−1∑

i=n
Ãi j = lim

n→−∞
1

|n|
k−1∑

i=n
(Wj−1,i+1 + S j−1,i+1) = f (α). (7.14)

The four leftmost terms of (7.13) vanish as n→−∞ (by stationarity and finite
expectations). Hence letting n → −∞ in (7.13) along a suitable subsequence
leads to 0 = m0 − f (α) < 0 (the last inequality from Lemma 4.3). This contra-
diction verifies (7.11).

At this point we have shown that the stationary process { Ãn,0}n∈Z is a fixed point
for Φ with the deterministic pathwise limit (7.14). By Prop. 4.4 of [41] the process
{ Ãn,0}n∈Z must be ergodic. We have shown that f (α) ∈ A . The part of the lemma
already proved gives the ergodicity of the process

{ Ãi j , S̃i j , W̃i j } = {Wj−1,i+1 + S j−1,i+1, S j,i , A j−1,i+1 − S j,i }

under translations of the index i . Since ergodicity is preserved bymappings that respect
translations, a suitable mapping of the right-hand side above gives the Te2 -ergodicity
of {Ank, Snk,Wnk}. ��
Proof of Theorem 5.2 We begin by constructing a convenient countable subsetA0 of
A . Let U0 be a countable dense subset of riU such that U0 contains

(i) all (at most countably many) points of nondifferentiability of gpp,
(ii) all endpoints of nondegenerate intervals on which gpp is linear (recall (4.4)), and
(iii) a countable dense subset of points of differentiability of gpp.

Then put
A0 =

{
γ ′(s±) : ( s

1+s ,
1

1+s
) ∈ U0

}
. (7.15)

A0 ⊂ A by virtue of Lemma 7.6(b) and the closedness of A in (m0,∞).
We construct a coupled process

{(Aα, S,Wα) : α ∈ A0} = {Aα
n,k, Sn,k,W

α
n,k : (n, k) ∈ Z

2, α ∈ A0}

whose distribution P on R
A0×Z

2 × R
Z
2 × R

A0×Z
2
is invariant under translations of

the (n, k) index over Z
2 and that has the following properties. For each (n, k) ∈ Z

2

we have the inequalities

Aα
n,k ≤ Aβ

n,k and Wα
n,k ≥ Wβ

n,k for α < β. (7.16)
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For each α ∈ A0 the marginal process (Aα, S,Wα) is a stationary queueing process
of the type described in Lemma 7.7, stationary and ergodic under both translations,
with {Aα

n,0}n∈Z ∼ μα and {S0,k +Wα
0,k}k∈Z ∼ μ f (α). P comes from a subsequential

Cesàro limit of queueing processes followed by Kolmogorov extension to the full
lattice.

Start by taking for each α ∈ A0 the constant initial inter-arrival process Aα
n,0 = α.

Use the iterative equations to construct (Aα,k, Sk,Wα,k) = {Aα
n,k, Sn,k,Wα

n,k}n∈Z for
k ∈ Z+. Use the same version of the service times {Sn,k} for each α ∈ A0. Inequalities
(7.16) are true for the A-processes at k = 0 by construction. They are propagated for
all k ∈ Z+ by Eqs. (7.5) and (7.6).

Let Q� be the joint distribution of {(Aα,�+k, S�+k,Wα,�+k) : α ∈ A0, k ≥ 0},
a probability measure on the countable product space R

A0×Z×Z+ × R
Z×Z+ ×

R
A0×Z×Z+ . By the development in sections 5 and 6 of [41], sequence {Q�} is tight

and for each α ∈ A0, Aα,k converges weakly to μα as k → ∞ and the process
(Aα,�+k, S�+k,Wα,�+k)k≥0 converges weakly to a stationary queueing process as
� → ∞. In order to get a limit where the joint distribution between different α-
values is also invariant under shifts of the k-index, we perform one averaging: let
Q

n = n−1
∑n−1

�=0 Q�. The effect of shifting the k-index is Q
n ◦T−1e2 = n−1

∑n
�=1 Q�.

Thus any limit point Q of {Qn} is invariant under shifts of the k-index. This invari-
ance extends Q to negative k-values and gives an invariant measure P indexed by
(n, k) ∈ Z

2. The almost sure inequalities (7.16) are preserved in this construction. P
has the properties described below (7.16).

Define the following mapping from the coordinates {(Aα, S,Wα) : α ∈ A0} to the
coordinates {(ωx )x∈Z2 , (ω

i,α
x )i∈{1,2}, α∈A0, x∈Z2} of the space Ω̂ = Ω×R

{1,2}×A0×Z
2
:

for (n, k) ∈ Z
2 and α ∈ A0,

(ωn,k, ω
1,α
n,k , ω

2,α
n,k ) = (S−n,−k, Aα−n−1,−k+1, Wα−n,−k + S−n,−k). (7.17)

Let P̂ be the distribution induced on Ω̂ by this mapping, from the joint distribution P
of the coupled stationary queueing processes.

The probability space (Ω̂, Ŝ, P̂) of Theorem 5.2 has now been constructed. For
ξ ∈ U0 and i = 1, 2 define the functions Bξ

±(ω̂, x, x+ei ) as the following coordinate
projections:

Bξ
±(ω̂, x, x + ei ) = ω

i,γ ′(s±)
x for s = ξ · e1/ξ · e2. (7.18)

The setA0 was constructed to ensure γ ′(s±) ∈ A0 for each ξ ∈ U0 so these functions
are well-defined. For each ξ ∈ U0 and x, y ∈ Z

d , follow the same deterministic
procedure to extend these functions to Bξ

±(ω̂, x, y) for all x, y ∈ Z
d . For example,

through these steps:

• Set Bξ
±(ω̂, x, x) = 0. For x ≤ y fix a path x = x0, x1, . . . , xm = y such that all

e1 steps come before e2 steps and set Bξ
±(ω̂, x, y) = ∑m−1

i=0 Bξ
±(ω̂, xi , xi+1). If

y ≤ x , set Bξ
±(ω̂, x, y) = −Bξ

±(ω̂, y, x).
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• If there is no path between x and y, let z = (x · e1 ∧ y · e1 , x · e2 ∧ y · e2) and set
Bξ
±(ω̂, x, y) = Bξ

±(ω̂, x, z)+ Bξ
±(ω̂, z, y).

The remainder of the proof of Theorem 5.2 consists of two steps: (a) verification
that the processes Bξ

±(x, y) thus defined for ξ ∈ U0 satisfy all the properties required

by Theorem 5.2 and (b) definition of Bξ
±(x, y) for all ξ ∈ riU through right limits

followed by another verification of the required properties.
In part (i) of Theorem 5.2 the stationarity and ergodicity of each process

ψ±,ξ
x (ω̂) = (ωx , B

ξ
±(x, x + e1), B

ξ
±(x, x + e2))

under both translations Te1 and Te2 are a consequence ofLemma7.7. The independence
claim follows from the queuing construction. For any given (n, k) and m < −k,
Aα−n−1,−k is a function of ({Aα

i,m}i≤−n−1, {Si, j }i≤−n,m≤ j≤−k−1) and Wα−n−1,−k is a
function of ({Aα

i,m}i≤−n−2, {Si, j }i≤−n−1,m≤ j≤−k). These inputs are independent of
S−n,−k .

Part (ii) of Theorem 5.2 requires the cocycle properties. For a given ξ ∈ U0,
conservation law (7.7) translates into the P̂-almost sure property

Bξ
±(x, x + e2)+Bξ

±(x + e2, x + e1+e2)=Bξ
±(x, x + e1)+Bξ

±(x + e1, x + e1 + e2).

Thus {Bξ
±(x, y)}x,y∈Z2 is additive. Stationarity came in the previous paragraph and

integrability is the integrability of the A, S and W variables.
The mean vectors satisfy

h±(ξ) = − (
Ê[Bξ

±(0, e1)] , Ê[Bξ
±(0, e2)]

) = −(E[Aγ ′(s±)
0,0 ], E[W γ ′(s±)

0,0 + S0,0]
)

= −(γ ′(s±), f (γ ′(s±))
) = −∇gpp(ξ±).

The fact that one-sided gradients satisfy the duality (2.7) is basic convex analysis.
The bottom equation of (7.6) translates into the potential-recovery property

ωx = Bξ
±(x, x + e1) ∧ Bξ

±(x, x + e2) P̂− a.s.

Part (ii) of Theorem 5.2 has been verified for Bξ
±(ω̂, x, y) for ξ ∈ U0.

Part (iii) of Theorem 5.2 is the equality of cocycles that share the mean vector. This
is clear from (7.18) and the construction because h±(ξ) determines γ ′(s±).

For the inequalities of part (iv), let s = ξ ·e1/ξ ·e2 and t = ζ ·e1/ζ ·e2 for ξ, ζ ∈ U0.
Then ξ · e1 < ζ · e1 implies s < t . By concavity γ ′(s−) ≥ γ ′(s+) ≥ γ ′(t−) and

the first inequality of (7.16) gives Aγ ′(s−)

n,k ≥ Aγ ′(s+)

n,k ≥ Aγ ′(t−)

n,k which translates
into the first inequality of (5.4). Similarly the second inequality of (7.16) gives the
second inequality of (5.4). Let Ω̂1 be the event on which inequalities (5.4) hold for all
countably many ξ, ζ ∈ U0.
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For ζ ∈ U0 define Y (ω̂, ζ, x, x + e1) = supξ∈U0: ξ ·e1>ζ ·e1 B
ξ
±(x, x + e1). Then for

any sequence ξn ∈ U0 such that ξn · e1 ↘ ζ · e1, by monotonicity

lim
n→∞ Bξn± (x, x+ e1) = Y (ω̂, ζ, x, x + e1) ≤ Bζ

+(x, x+ e1) for all ω̂ ∈ Ω̂1. (7.19)

Monotonicity of the family of cocycles gives a bound that justifies dominated conver-
gence, and hence

Ê
[
lim
n→∞ Bξn± (x, x + e1)

] = lim
n→∞ γ ′(sn±) = γ ′(t+) = Ê

[
Bζ
+(x, x + e1)

]
. (7.20)

Equality of expectations forces a.s. equality in (7.19).We nowhave a.s. right continuity
(5.5) for the case (x, y) = (x, x + e1). Analogously deduce a.s. right continuity (5.5)
for (x, y) = (x, x + e2), and a.s. left continuity (5.6) for (x, y) = (x, x + ei ). Then
a.s. left and right continuity follow for all (x, y) by the construction of Bξ

±(x, y) in

terms of the nearest-neighbor values Bξ
±(x, x + ei ).

Let Ω̂0 be the full P̂-measure subset of Ω̂1 on which limits (5.5) and (5.6) hold for
all ζ ∈ U0 when ξn → ζ in U0.

Theorem 5.2 has now been verified for Bξ
± for ξ ∈ U0. The next step defines Bζ

±
for ζ ∈ (riU )�U0. Since all points of nondifferentiability of gpp were included in

U0, ζ ∈ D . Then we define Bζ
± as equal and denote it by Bζ . We choose right limits

for the definition. So for ζ ∈ (riU )�U0 set

Bζ (ω̂, x, x + e1) = Bζ
±(ω̂, x, x + e1) = sup

ξ∈U0 : ξ ·e1>ζ ·e1
Bξ
±(ω̂, x, x + e1)

Bζ (ω̂, x, x + e2) = Bζ
±(ω̂, x, x + e2) = inf

ξ∈U0 : ξ ·e1>ζ ·e1
Bξ
±(ω̂, x, x + e2).

(7.21)

On the event Ω̂0 of full P̂-probability defined above, definition (7.21) extends
inequalities (5.4) and right limits (5.5) to all ξ, ζ ∈ riU , nearest-neighbor edges
(x, x+ei ) and sequences ξn ·e1 ↘ ζ ·e1. Extend the nearest-neighbor values Bζ (x, x+
ei ) to all Bζ (x, y) by the procedure used earlier after (7.18). Then right limits (5.5)
work for all Bζ (x, y) and sequences ξn · e1 ↘ ζ · e1.

Fix ζ ∈ (riU )�U0. We argue that outside a single P̂-null set specific to ζ , we get
the left limit (5.6). Define

Y (ω̂, ζ, x, x + e1) = inf
ξ∈U0 : ξ ·e1<ζ ·e1

Bξ
±(ω̂, x, x + e1)

Y (ω̂, ζ, x, x + e2) = sup
ξ∈U0 : ξ ·e1<ζ ·e1

Bξ
±(ω̂, x, x + e2).

The left limit Y (ω̂, ζ, x, x + ei ) = limn→∞ Bζn± (ω̂, x, x + ei ) happens for ω̂ ∈ Ω̂0 by
monotonicity, for any sequence ζn · e1 ↗ ζ · e1 in riU . Now set

Ω̂(ζ ) = {ω̂ ∈ Ω̂0 : Y (ω̂, ζ, x, x + ei ) = Bζ (ω̂, x, x + ei ) ∀x ∈ Z
2, i = 1, 2}.
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The monotonicity argument with coinciding expectations used above in (7.20) implies
that P̂(Ω̂(ζ )) = 1. From nearest-neighbor values the limits extend to all (x, y) by the
construction, and so on the full measure event Ω̂(ζ ) we have (5.6).

We turn to verifying the remaining claims of Theorem 5.2 for the fully defined
processes Bξ

±(x, y). First, right-continuity in ξ is enough tomake Bξ
+(ω̂, x, y) a jointly

Borel function of (ω̂, ξ, x, y). Since Bξ
− replaces the value of B

ξ
+ with a different Borel

function of (ω̂, x, y) only at the countably many ξ ∈ (riU )�D , Bξ
−(ω̂, x, y) is also

jointly Borel.
Part (i). Stationarity and the independence claim are preserved by almost sure lim-

its but ergodicity is not. To verify the ergodicity of ψ
ζ
x (ω̂) = (ωx , Bζ (ω̂, x, x +

e1), Bζ (ω̂, x, x + e2)) under both translations Te1 and Te2 we return to the queuing
picture. The limit (7.21) can also be taken in the queueing processes. FirstA0 � αn =
γ ′(sn−)↗ γ ′(t) = β. SinceA is closed,β ∈ A . Hence there is a stationary queueing
process (Aβ, S,Wβ) that satisfies Lemma 7.7 and that we can include in the coupling
with the queueing processes indexed by A0. The coordinatewise monotone a.s. limit
limn→∞(Aαn , S,Wαn ) must coincide with (Aβ, S,Wβ) by the same reasoning used
above: there are inequalities, namely limn→∞ Aαn

m,k ≤ Aβ
m,k and limn→∞Wαn

m,k ≥
Wβ

m,k , but the expectations agree and hence force a.s. agreement. The continuous map-

ping (7.17) transports the distribution of {(S−n,−k, Aβ
−n−1,−k+1, W

β
−n,−k + S−n,−k) :

n, k ∈ Z} to the process {(ωx , Bζ (x, x+e1), Bζ (x, x+e2)) : x ∈ Z
2}, which thereby

inherits from Lemma 7.7 the ergodicity claimed in part (i) of Theorem 5.2.
The cocycle properties and expectations in part (ii) are preserved by the limits. The

identities of part (iii) continue to hold without null sets because if vector h(ζ ) is not
unique to Bζ , then ζ lies in the interior of some linear segment ]ξ ′, ξ ′′[ of gpp with
ξ ′, ξ ′′ ∈ U0 and ξ ′ · e1 < ξ ′′ · e1. The construction ((7.18) and (7.21)) then implies

that Bζ = Bξ ′′
− = Bξ ′

+ for all ζ ∈]ξ ′, ξ ′′[. The inequalities and limits of parts (iv)–(v)
were discussed above. This completes the proof of Theorem 5.2. ��

7.1 Exactly solvable models

We describe briefly how the calculations work in the exactly solvable geometric case
discussed in Sect. 3.1. (The exponential case is completely analogous.) The weights
{ωx } are i.i.d. withP(ωx = k) = (1−m0

−1)k−1m0
−1 for k ∈ N, meanm0 = E(ω0) >

1 and variance σ 2 = m0(m0 − 1).
With i.i.d. geometric service times {Sn,0}withmeanm0, let the initial arrival process

{An,0} be i.i.d. geometric with mean α. Let Jn = Sn,0 + Wn,0. Then equations (7.3)
and (7.4) show that the process {(An,1, Jn+1)}sn∈Z is an irreducible aperiodic Markov
chain with transition probability

P(An,1 = b, Jn+1 = j | An−1,1 = a, Jn = i)

= P
{
(An,0 − i)+ + Sn+1,0 = b, (i − An,0)

+ + Sn+1,0 = j
}
. (7.22)
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The equations also show that (An,0, Sn+1,0) is independent of (An−1,1, Jn). Since
the process {(An,1, Jn+1)}n∈Z is stationary, its marginal must be the unique invariant
distribution of transition (7.22), namely

P(An−1,1 = k, Jn = j) = (1− α−1)k−1α−1 · (1− f (α)−1) j−1 f (α)−1 for k, j ∈ N,

with f (α) = m0
α−1

α−m0
. This shows that i.i.d. mean α geometric is a queuing fixed

point. Next solve for γ (s) = infα>m0{αs+ f (α)}. The unique minimizing α in terms
of s = ξ · e1/ξ · e2 is α = m0 + σ

√
ξ · e2/ξ · e1 which defines the bijection between

ξ ∈ riU and α ∈ (m0,∞). From this

f (α) = m0
α − 1

α − m0
= m0 + σ

√
ξ · e1/ξ · e2.

Finding γ (s) gives (3.8) via (4.1) and then γ ′(s) gives (3.9) via (4.12) and (5.3).
The terms in the sum Jn = Sn,0 + Wn,0 are independent, so we can also find the

distribution of the waiting time:

P(Wn,0 = 0) = α − m0

α − 1
, P(Wn,0 = k) = m0 − 1

α − 1
· (1− f (α)−1

)k−1
f (α)−1 (k ≥ 1).

Acknowledgements The authors thank Yuri Bakhtin and Michael Damron for useful discussions and two
anonymous referees for valuable comments. N. Georgiou was partially supported by a Wylie postdoctoral
fellowship at the University of Utah and the Strategic Development Fund (SDF) at the University of Sussex.
F. Rassoul-Agha and N. Georgiou were partially supported by National Science Foundation grant DMS-
0747758. F. Rassoul-Agha was partially supported by National Science Foundation grant DMS-1407574
and by Simons Foundation grant 306576. T. Seppäläinen was partially supported by National Science
Foundation grants DMS-1306777 and DMS-1602486, by Simons Foundation grant 338287, and by the
Wisconsin Alumni Research Foundation.

Appendix: Ergodic theorem for cocycles

Cocycles satisfy a uniformergodic theorem.The following is a special case ofTheorem
9.3 of [28]. Note that a one-sided bound suffices for a hypothesis. Recall Definition
2.1 for the space K0 of centered cocycles.

Theorem 7.8 Assume P is ergodic under the transformations {Tei : i ∈ {1, 2}}. Let
F ∈ K0. Assume there exists a function V such that for P-a.e. ω

lim
ε↘0

lim
n→∞ max

x :|x |1≤n
1

n

∑

0≤k≤εn

|V (Tx+kei ω)| = 0 for i ∈ {1, 2} (7.23)

and maxi∈{1,2} F(ω, 0, ei ) ≤ V (ω). Then

lim
n→∞ max

x=z1+···+zn
z1,n∈{e1,e2}n

|F(ω, 0, x)|
n

= 0 for P-a.e. ω.

If the process {V (Txω) : x ∈ Z
2} is i.i.d., then a sufficient condition for (7.23) is

E(|V |p) <∞ for some p > 2 [50, Lemma A.4].
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