MATH 5610/6860

PRACTICE FINAL EXAM

Note: This exam is longer and more difficult than the actual final.
Problem 1. Consider a smooth function f with the following values.

$$
\begin{array}{c|cccc}
x & 1 & 2 & 4 & 5 \\
\hline f(x) & 0 & 3 & -3 & 0
\end{array}
$$

(a) Use divided differences to find the polynomial $p(x)$ interpolating $f(x)$ (at all four nodes) in Newton form.
(b) Assuming all derivatives of f are available, give an expression of the interpolation error $f(t)-p(t)$ for some $t \in[1,5]$.

Problem 2. Find the cubic spline $S(x)$ for $x \in[0,1]$ satisfying the conditions $S(0)=0, S(1)=1, S^{\prime}(0)=S^{\prime}(1)=0$.

Problem 3. Derive the centered difference formula for approximating $f^{\prime}(x)$ with an error term involving a higher order derivative of f.

Problem 4. (K\&C 7.1.15) Derive a numerical differentiation formula of order $\mathcal{O}\left(h^{4}\right)$ by applying Richardson's extrapolation to

$$
f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]-\frac{h^{2}}{6} f^{\prime \prime \prime}(x)-\frac{h^{4}}{120} f^{(5)}(x)-\cdots
$$

What is the error in terms of h^{4} ?

Problem 5. (K\&C 7.2.10) Use the Lagrange interpolation polynomial to derive a quadrature formula of the form

$$
\int_{0}^{1} f(x) d x \approx A f(1 / 3)+B f(2 / 3)
$$

Transform this formula to one for integration over $[a, b]$.

Problem 6. (K\&C 7.5.2) The trapezoid rule can be written in the form

$$
I \equiv \int_{u}^{v} f(x) d x=T(u, v)-\frac{1}{2}(v-u)^{3} f^{\prime \prime}(\xi)
$$

(a) Let $w=(u+v) / 2$ and assume f is twice continuously differentiable. Find the constant C in the error term below

$$
I=T(u, w)+T(w, v)+C(v-u)^{3} f^{\prime \prime}(\tilde{\xi}) .
$$

(b) Assuming $f^{\prime \prime}(\tilde{\xi}) \approx f^{\prime \prime}(\xi)$ find an approximation to the error term in the equation from (a) in terms of $T(u, w), T(w, v)$ and $T(u, v)$.

Problem 7. Find the LU factorization (with L being a unit lower triangular matrix) of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Problem 8. The first five Legendre polynomials (monic and orthogonal on $[-1,1])$ are:

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=x \\
& p_{2}(x)=x^{2}-\frac{2}{3} \\
& p_{3}(x)=x^{3}-\frac{3}{5} x \\
& p_{4}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}
\end{aligned}
$$

Find p_{4} using p_{0}, \cdots, p_{3}.

Problem 9. Find the polynomial of the form $p(x)=a+b x$ that best approximates $f(x)=x^{3}$ in $[0,1]$, where the norm is induced by the product

$$
(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

Problem 10. Let $x_{j}=2 \pi j / N$ and $E_{j}(x)=\exp [2 i \pi j x / N], j=0, \ldots, N-1$.
Recall the pseudo-inner product

$$
(f, g)_{N}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) \bar{g}\left(x_{j}\right)
$$

and its fundamental property

$$
\left(E_{n}, E_{m}\right)= \begin{cases}1 & \text { if } n-m \text { is divisible by } N \\ 0 & \text { otherwise }\end{cases}
$$

Consider the trigonometric polynomial

$$
p=\sum_{k=0}^{N-1} c_{k} E_{k} .
$$

Show the discrete Parseval's identity

$$
\sum_{j=0}^{N-1}\left|p\left(x_{j}\right)\right|^{2}=N \sum_{j=0}^{N-1}\left|c_{k}\right|^{2}
$$

Hint: For $j=0, \ldots, N-1$ we have,

$$
\left|p\left(x_{j}\right)\right|^{2}=\left(\sum_{k=0}^{N-1} c_{k} E_{k}\left(x_{j}\right)\right)\left(\sum_{k^{\prime}=0}^{N-1} c_{k^{\prime}} \bar{E}_{k^{\prime}}\left(x_{j}\right)\right) .
$$

