MATH 5610 HOMEWORK \#7, DUE TUE DEC 6

1. K\&C 4.1.20 Give an example of a matrix with all positive entries such that $x^{T} A x$ is sometimes negative. (a 2×2 matrix suffices)
2. Calculate by hand the Cholesky factorization of

$$
\left[\begin{array}{ccc}
4 & 4 & -2 \\
4 & 13 & 1 \\
-2 & 1 & 18
\end{array}\right]
$$

3. Implement the LU algorithm with partial pivoting.
(see notes math5610_013.pdf:p162). Please select at step k the largest pivot in a column, i.e. at step k select the pivot i s.t.

$$
\left|u_{i k}\right| \geq\left|u_{j k}\right| \text { for } k \leq j \leq n .
$$

In Matlab this can be easily written as:

```
% choose pivot i
[val,i] = max(abs(U(k:n,k)));
i = i+k-1;
```

Please see the class website for sample test code and output, which you are welcome to reuse. Test your algorithm with the following matrices (B\&F 6.5.4 a, c)

$$
A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
1 & -1 & 2 \\
1 & -1 & 4
\end{array}\right] \text { and } A=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
-1 & -1 & 1 & 5 \\
2 & 2 & 3 & 7 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

