MATH 5610/6860 HOMEWORK \#4, DUE WED OCT 5

Note: Sample code is provided in the class website.

1. B\&F 2.6.4 a,b (Müller's method). Please specify the initial iterates z_{0}, z_{1}, z_{2} you used to find a particular root and the number of iterations.
2. K\&C 6.2.23. The polynomial

$$
p(x)=2-(x+1)+x(x+1)-2 x(x+1)(x-1)
$$

interpolates the first four points in the table

$$
\begin{array}{c|ccccc}
x & -1 & 0 & 1 & 2 & 3 \\
\hline y & 2 & 1 & 2 & -7 & 10
\end{array}
$$

By adding one additional term to p, find a polynomial that interpolates the whole table.
3. B\&F 3.1.6 a,b, additionally implement the divided differences algorithm 3.2 to obtain the same results. Then compare the actual interpolation error to a bound derived from Theorem 3.3 (i.e. B\&F $3.1 .8 \mathrm{a}, \mathrm{b})$. Produce a plot showing the function and the interpolation polynomials of degrees 1, 2 and 3 similar to the one provided in the class website.
4. K\&C 6.2.18 Prove that if f is a polynomial, then the divided differences $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is a polynomial in the variables $x_{0}, x_{1}, \ldots, x_{n}$. (i.e. if we freeze all the x_{j} for $j \neq i$, then $q\left(x_{i}\right) \equiv f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is a polynomial in x_{i}). You may prove this by an induction argument:
i. Prove that $f\left[x_{0}\right]$ is a polynomial in x_{0}.
ii. Prove that $f\left[x_{0}, x_{1}\right]$ is a polynomial in x_{0} and x_{1}. Because nodes in divided differences can be permuted, it is enough to show that $f\left[x_{0}, x\right]$ is a polynomial in x. This step is not needed for induction argument but it helps to figure out how to do the general case.
iii. Assuming $(n-1)$-th order divided differences are polynomials of their variables, prove the statement for n-th order divided differences. Again because the order of the nodes in divided differences does not matter, it is enough to show that $f\left[x_{0}, x_{1}, \ldots, x_{n-1}, x\right]$ is a polynomial. (Hint: use recursion formula B\&F eq. (3.9))

