MATH 5610 HOMEWORK \#2, DUE TUE SEP 20

Note: Sample Matlab code for the programming part of this assignment (especially for the formatting) is available in the class website.

1. B\&F 2.1.6 c,d (Bisection method in Matlab)
2. B\&F 2.2.19. Additionally show that the iteration can be obtained by applying Newton's method to a certain polynomial.
3. B\&F 2.3.6 a,b and 2.3.8 a,b (Newton's method and Secant method)
4. $\mathrm{K} \& \mathrm{C}$ 3.4.12 Let p be a positive number. What is the value of the following expression?

$$
x=\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}}
$$

Note that this can be interpreted as meaning $x=\lim _{n \rightarrow \infty} x_{n}$, where $x_{1}=\sqrt{p}, x_{2}=\sqrt{p+\sqrt{p}}$, etc \ldots
(Hint: You only need to find the fixed point of a certain function. It is not necessary to show that the function is a contraction.)
5. K\&C 3.4.25 Prove that the function F defined by $F(x)=4 x(1-x)$ maps the interval $[0,1]$ into itself and is not a contraction. Prove that it has a fixed point. Why does this not contradict the Contractive Mapping Theorem?
6. B\&F 2.4.12 (Proof of theorem 2.12)

