MATH 5610/6860 HOMEWORK \#1, DUE TUE SEP 13

Notes: Common abbreviations for problem sources are: B\&F (Burden and Faires, ninth edition, the class textbook) and K\&C (Kincaid and Cheney). You do not need the K\&C book to do homework assignments in this class.

1. B\&F 1.1.2 a,b
2. B\&F 1.1.8
3. B\&F 1.3.3
4. K\&C 1.2.8: The expressions $e^{h},\left(1-h^{4}\right)^{-1}, \cos (h)$, and $1+\sin \left(h^{3}\right)$ all have the same limit as $h \rightarrow 0$. Express each in the following form with the best integer values of α and β.

$$
f(h)=c+\mathcal{O}\left(h^{\alpha}\right)=c+o\left(h^{\beta}\right)
$$

Hint: The Taylor expansion of $\left(1-h^{4}\right)^{-1}$ follows from that of $(1-$ $x)^{-1}$ by setting $x=h^{4}$. A similar approach works for $\sin \left(h^{3}\right)$.
5. K\&C 2.1.10: Let $x=2^{3}+2^{-19}+2^{-22}$. Find the machine numbers (in IEEE single precision) that are just to the left and to the right of x. Determine $\mathrm{fl}(x)$ (rounding to the nearest machine number), the absolute error $|\mathrm{fl}(x)-x|$, and the relative error $|\mathrm{f}(x)-x| /|x|$. Verify that the relative error in this case does not exceed $\epsilon / 2=2^{-24}$.

