MATH 5610/6860
 COMPUTER LAB \# 2

1. Consider the sequence $\left\{x_{n}\right\}$,

$$
\begin{aligned}
x_{1} & =2, x_{2}=3, \\
x_{n+1} & =x_{n}-\frac{x_{n}^{2}-2}{x_{n}+x_{n-1}}, n \geq 2 .
\end{aligned}
$$

a. Estimate numerically the convergence rate of this sequence to $\sqrt{2}$ (i.e. if the convergence is linear, superlinear, quadratic, etc. . .)
b. How would you estimate the convergence rate if the true value of the limit was not known?
2. Numerically verify the following assertions,
a. $1 /(n \ln n)=o(1 / n)$
b. $1 / n=o(1 / \ln n)$
c. $(2 n-1) / n^{3}=\mathcal{O}\left(1 / n^{2}\right)$
3. Reproduce the example given in class that shows that a relative error less than machine epsilon is not guaranteed for several arithmetic operations (keep in mind Matlab uses double precision).

